首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metazoan phylogeny is in a state of ferment, stirred by the addition of new molecular trees as well as controversial interpretations of molecular ‘clocks’. Concerning the latter topic, the clocks recurrently point to divergence times substantially older than the known fossil record. Some attempt reconciliation by appealing to a conveniently cryptic interval prior to the first fossils. This effectively reduces the fossil record to an erratic search-light giving only glimpses into the true evolutionary history. Other options, however, remain open. Molecular clocks may themselves run erratically and what happens in molecular history may not coincide with the emergence of body plans.  相似文献   

2.
Over the next decade, the impact of library synthesis will play a major role in shortening the lead optimization phase of drug discovery. The prognosis for combinatorial chemistry to discover fundamentally different new classes of therapeutically active small molecules against some of the more difficult biological targets is less certain. Expectations are high because the technology potentially allows us to sample available drug space by synthesizing all possible small molecule ligands (variously estimated to be between 1030–1050 compounds). Some caution is advised, however, since, despite recent increases in high-throughput screening of substantially greater numbers of synthetic compounds and natural products, we are not routinely finding a plethora of new structures. The outcome may be that combinatorial chemistry offers us the ability to work faster on finding ligands for well-established tractable targets, such as G-protein-coupled receptors, ion channels or proteases, rather than, say, the more complex protein—protein interactions which from the majority of targets in signal transduction pathways.  相似文献   

3.
In the past year, the crystal structure of αβ heterodimeric protein farnesyltransferase from rat was reported to a resolution of 2.25 Å. Farnesyltransferase catalyzes the essential post-transduction proteins. The structure provides a foundation for understanding the specificity and mechanism of protein prenylation and may aid in the design of new anticancer therapeutics.  相似文献   

4.
Use of model systems to explore the forces that control β sheet formation was stymied for many years by the perception that small increments of β sheet necessarily aggregate. Recently, however, a number of short peptides (9–16 residues in length) that fold into two-stranded antiparallel β sheets (‘β hairpins’) have been reported; several short peptides (20–24 residues in length) that fold into three-stranded antiparallel β sheets have also been described. These model systems are beginning to provide fundamental insights into the origins of β sheet conformational stability.  相似文献   

5.
Adaptive mutations appear in response to selection. In the best-studied system, the two most controversial issues were resolved this year. The mutations are neither Lamarckian nor a peculiarity of bacterial sex, as had been suggested. They occur genome-wide in a hypermutable subpopulation of stressed cells. Genomic ‘hot’ and ‘cold’ regions may explain previous failures to detect similar mutations in other systems and at other sites. Stationary phase specific limitation of mismatch repair has also been discovered.  相似文献   

6.
7.
8.
Oligosaccharide receptors for bacteria: a view to a kill   总被引:1,自引:0,他引:1  
Oligosaccharide recognition is a major means of bacterial—host cell attachment. Bacterial—host receptor binding can subvert host signaling pathways to cause pathology. In addition, pathogenic bacteria can utilize more than one recognition system to bind host cells. Recent studies of Helicobacter pylori illustrate both these points. Together with this redundancy in recognition, the importance of multivalent sugar binding has become apparent. Multivalent sugar receptor analogs have been used to both prevent and detach adherent bacteria. Several new chemical technologies for the generation of bioactive glycopolymers have been developed and may be successfully adapted to address both these issues.  相似文献   

9.
In both Drosophila wings and vertebrate limbs, signaling between dorsal and ventral cells establishes an organizer that promotes limb formation. Significant progress has been made recently towards characterizing the signaling interactions that occur at the dorsal—ventral limb border. Studies of chicks have indicated that, as in Drosophila, this signaling process requires the participation of Fringe. Studies of Drosophila have indicated that Fringe functions by inhibiting the ability of Notch to be activated by one ligand, Serrate, while potentiating the ability of Notch to be activated by another ligand, Delta. Recent studies of both Drosophila and vertebrates have also shed new light on the signaling activity of the dorsal—ventral boundary limb organizer, and have highlighted how this organizer is maintained by feedback mechanisms with neighboring cells.  相似文献   

10.
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing ‘introns-early’ versus ‘introns-late’ controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations.  相似文献   

11.
Databases for biologists are becoming increasingly important. Some of these can be regarded as ‘core’ resources, such as the bibliographic databases, whereas others are of greater interest to specialists. As comparative genomics develops, however, even databases limited in their scope (e.g. to a single organism) are of great interest to a wider community.  相似文献   

12.
Hepatocytes and biliary epithelia are phenotypically very dissimilar, but share a common ancestry. Hepatocytes regenerate very efficiently, and their division potential indicates that many of them are functional stem cells. When hepatocyte-damaging agents also impair the regenerative ability of surviving hepatocytes, a potential stem cell system of biliary origin is activated to generate new hepatocytes — a reversal of ontogeny. Now both bile duct derived cells and hepatocytes can be isolated from the liver, genetically modified in vitro and returned to their in vivo origins where, after considerable population expansion, they can function as hepatocytes — paving the way for ex vivo gene therapy.  相似文献   

13.
Two recent large-scale genetic screens in zebrafish have identified many mutations that affect differentiation in a variety of organ systems, particularly the notochord, the neural crest and the blood. The combination of these newly identified mutations and well established embryological methods makes zebrafish uniquely suited among vertebrate experimental systems to simultaneously address the roles of specific genes and specific cell—cell interactions during differentiation.  相似文献   

14.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

15.
The three-dimensional structures of several biotin-binding proteins are now known, giving insights into the molecular architecture of the binding sites for biotin. In combination with biochemical and computational approaches, these structural insights provide the basis for our present understanding of biotin—protein interactions which, in some cases, give rise to spectacular binding constants.  相似文献   

16.
Cell biology depends on the interactions of macromolecules, such as protein—DNA, protein—protein or protein—nucleotide interactions. GTP-binding proteins are no exception to the rule. They regulate cellular processes as diverse as protein biosynthesis and intracellular membrane trafficking. Recently, a large number of genes encoding GTP-binding proteins and the proteins that interact witht these molecular switches have been cloned and expressed. The 3D structures of some of these have also been elucidated  相似文献   

17.
Comparative chromosome painting has shown that synteny has been conserved for large segments of the genome in various placental mammals. Advances such as spectral karyotyping and multicolour ‘bar coding’ lend speed and precision to comparative molecular cytogenetics. Reciprocal chromosome painting and hybridisations with probes such as yeast artificial chromosomes, cosmids, and fibre fluorescence in situ hybridisation allow subchromosomal assignments of chromosome regions and can identify breakpoints of rearranged chromosomes. Advances in molecular cytogenetics can now be used to test the hypothesis that chromosome rearrangement breakpoints in human pathology and in evolution are correlated.  相似文献   

18.
Recent experiments have extended our understanding of how sensory information in premotor networks controlling motor output is processed during locomotion, and at what level the efficacy of specific sensory—motor pathways is determined. Phasic presynaptic inhibition of sensory transmission combined with postsynaptic alterations of excitatory and inhibitory synaptic transmission from interneurons of the premotor networks contribute to the modulation of reflex pathways and to the generation of reflex reversal. These mechanisms play an important role in adapting the operation of central networks to external demands and thus help optimize sensory—motor integration.  相似文献   

19.
Antifreeze proteins   总被引:1,自引:0,他引:1  
Antifreeze proteins comprise a structurally diverse class of proteins that inhibit the growth of ice. Recently, new AFP types have been discovered; more active AFPs have been isolated; antecedents have been recognized supporting the notion of recent, multiple origins; and detailed structures have emerged leading to models for their adsorption to ice  相似文献   

20.
Recent research has focused on proteins important for early steps in replication in eukaryotes, and particularly on Cdc6/Cdc18, the MCMs, and Cdc45. Although it is still unclear exactly what role these proteins play, it is possible that they are analogous to initiation proteins in prokaryotes. One specific model is that MCMs form a hexameric helicase at replication forks, and Cdc6/Cdc18 acts as a ‘clamp-loader’ required to lock the MCMs around DNA. The MCMs appear to be the target of Cdc7-Dbf4 kinase acting at individual replication origins. Finally, Cdc45 interacts with MCMs and may shed light on how cyclin-dependent kinases activate DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号