首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of a unilateral perinatal hypoxic-ischemic brain injury on dopamine D1 and D2 receptors and uptake sites was investigated in rats by using in vitro quantitative binding autoradiography, 2-3 weeks after the insult. We observed significant decreases in the Bmax and KD for [3H]SCH 23390-labeled D1 and in the Bmax for [3H]spiperone-labeled D2 receptors in the lesioned caudate-putamen in rats with moderate brain injury (visible loss in hemispheric volume ipsilateral to the injury) compared with the nonlesioned contralateral caudate-putamen or with control rats. Changes in [3H]SCH 23390 and [3H]spiperone binding predominated in the dorsolateral part of the lesioned caudate-putamen. Pronounced reduction in [3H]SCH 23390 binding was also observed in the substantia nigra pars reticulata on the side of the lesion. In contrast, we did not observe any significant change in Bmax or KD for [3H]mazindol-labeled dopamine uptake sites. Similarly, no significant changes in the levels of dopamine or its metabolites were found on the side of the lesion. The observed reductions in striatal dopamine D1 and D2 receptors are a reflection of striatal cell loss induced by the hypoxic-ischemic injury. The absence of changes in [3H]mazindol binding or dopamine levels in the lesioned caudate-putamen indicates that the dopaminergic presynaptic structures are preserved.  相似文献   

2.
Activation of metabotropic glutamate receptor 5 (mGluRs) in the subthalamic nucleus (STN) results in burst-firing activity of STN neurons, which is similar to that observed in Parkinson's disease (PD). We examined the effects of chronic and systemic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, in firing activity of STN neurons in partially lesioned rats by 6-hydroxydopamine (6-OHDA). In 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (4 microg) into the medial forebrain bundle produced a partial lesion causing 36% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc). The 6-OHDA lesion in vehicle-treated rats showed an increasing firing rate and a more irregular firing pattern of STN neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, 14 days) produced neuroprotecive effects on the TH-ir neurons and normalized the hyperactive firing activity of STN neurons in 6-OHDA partially lesioned rats. These data demonstrate that partial lesion of the nigrostriatal pathway increases firing activity of STN neurons in the rat, and chronic, systemic MPEP treatment has the neuroprotective effect and reverses the abnormal firing activity of STN neurons, suggesting that MPEP has an important implication for the treatment of PD.  相似文献   

3.
Previous studies have suggested that R-apomorphine (R-APO), a non-selective dopamine (DA) receptor agonist, has neuroprotective effects in the experimental models of Parkinson's disease (PD). In this study, we investigated the effects of chronic, systemic treatment with R-APO in the firing activity of substantia nigra pars compacta (SNc) DA neurons in 6-hydroxydopamine (6-OHDA) partially lesioned rats. In the 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (20.1 microg) into the striatum produced a partial lesion causing 41% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the SNc. In the partially lesioned rats, chronic, systemic treatment of R-APO (10 mg/kg/day, s.c., 11 days) attenuated loss of TH-ir neurons in the SNc. The partial lesion of the nigrostriatal pathway and R-APO treatment did not change the firing rate and firing pattern of DA neurons in the SNc of rats. In contrast, the R-APO treatment increased the number of spontaneously active DA neurons of the SNc in the partially lesioned rats, while the lesion decreased the number of spontaneously active DA neurons. In addition, the chronic R-APO treatment decreased the responsiveness of the DA neurons to intravenously administrated R-APO in the partially lesioned rats. These results indicate that chronic, systemic R-APO treatment has the neuroprotective effect, and reverses the decrease in the number of spontaneously active DA neurons in the SNc whereas the treatment induces a reduction in the sensitivity of DA receptors in the SNc to R-APO stimulation in this model.  相似文献   

4.
Unilateral injections of 5-hydroxytryptamine (5-HT) into the pars reticulata of the substantia nigra of rats pretreated with a monoamine oxidase inhibitor induced a strong and long-lasting contralateral circling behaviour which was selectively increased as a function of time after degeneration of central 5-HT neurons with 5,7 dihydroxytryptamine. Rotations were not abolished after 6-hydroxydopamine lesion of nigrostriatal dopamine (DA) neurons, or after striatal kainic acid lesions, but were on the contrary increased. It is concluded that the contralateral circling response to intranigral 5-HT injection is caused by a specific stimulation of certain post-synaptic nigral 5-HT receptors susceptible to the development of denervation supersensitivity but does not require the participation of nigrostriatal DA neurons.  相似文献   

5.
Dopaminergic innervation of the caudate nucleus in adult rats can be partially restored by the grafting of embryonic substantia nigra into the overlying parietal cortex with concomitant compensation of certain behavioral abnormalities. In this study the function of such grafts was investigated neurochemically by quantification of transmitter metabolism and glucose utilization in the reinnervated target. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal bundle received a single graft to the dorsal caudate-putamen and were screened for rotational behavior following 5 mg/kg methamphetamine. The grafts restored dopamine concentrations in the caudate-putamen from initially less than 0.5% to an average of 13.6% of normal in rats with behavioral compensation. The ratio of 3,4-dihydroxyphenylacetic acid to dopamine, which is a measure of the rate of transmitter turnover, were equivalent in transplanted and normal control rats. Moreover, measurements of DOPA accumulation for a 30-min period after DOPA decarboxylase inhibition indicated similar fractional dopamine turnover rates in normal and transplant-reinnervated tissues. Correlations between rotational behavior and dopamine concentrations showed that reinnervation to only 3% of normal was sufficient to counterbalance the motor asymmetry. Measurements of glucose utilization by [14C]deoxyglucose autoradiography indicated equivalent metabolic rates for the grafted tissue and the intact substantia nigra. 6-Hydroxydopamine denervation of the caudate-putamen had no significant effect on neuronal metabolism in that region, nor did subsequent reinnervation from a graft. Grafts, however, were associated with a 16% reduction of glucose uptake in the ipsilateral globus pallidus, indicating a significant transsynaptic influence of the nigral transplants on neuronal metabolism in the host brain. Overall the results indicate that behaviorally functional neuronal grafts spontaneously metabolize dopamine and utilize glucose at rates characteristic of the intact nigrostriatal system. This provides further evidence that ectopic intracortical nigral transplants can reinstate dopaminergic neurotransmission in regions of the host brain initially denervated by the 6-hydroxydopamine lesion.  相似文献   

6.
Axoplasmic transport of dopamine in nigro-striatal neurons   总被引:1,自引:0,他引:1  
The possibility that dopamine is transported in the nigro-striatal system was investigated by the stereotaxic injection of labelled tyrosine or l -DOPA into the substantia nigra of tranylcypromine-pretreated rats. At various intervals thereafter (2-48 h), significant quantities of labelled material were recovered from the ipsilateral substantia nigra, globus pallidus and caudate-putamen, The activity in the substantia nigra consisted of DOPA, dopamine, methoxytyramine, acid metabolites and other unidentified metabolites. In the caudate-putamen, however, nearly all of the activity (85 per cent) was recovered in the dopamine fraction, the remainder being distributed among some of the metabolites. No DOPA was recovered from the caudate-putamen. On the basis of time-course studies after the injection of [14C]DOPA into the substantia nigra, we calculated the transport rate of dopamine in the nigro-striatal bundle to be 0.8 mm/h. Electrolytic lesions of the nigrostriatal bundle at the level of the lateral hypothalamus, pretreatment with 6-hydroxydopamine, or injections of [14C]DOPA dorsal to the substantia nigra each produced profound reductions in the amount of activity subsequently recovered from the caudate-putamen. These data suggest that the activity recovered from the caudate-putamen after injections of [14C]DOPA into the or substantia nigra reflected axonal transport rather than other processes such as diffusion or transport via the circulation. Pretreatment with the DOPA decarboxy-lase inhibitor, Ro 4-4602, significantly reduced the amount of activity recovered in the caudate-putamen, an indication that decarboxylation of DOPA to dopamine was a prerequisite for transport. Pretreatment with reserpine also severely reduced the transport of dopamine in the nigro-striatal bundle, an observation suggesting that dopamine was transported by binding to the amine storage granules. There was no evidence of retrograde transport of dopamine in the nigrostriatal bundle. Injections of larger than tracer quantities of labelled tyrosine into the substantia nigra did not produce the degree of transport of dopamine that was obtained after injections of DOPA, a result suggesting that the amine storage granules may not normally be filled during axonal transport.  相似文献   

7.
Dopamine-sensitive adenylate cyclase and 3H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and/or dendrites of dopaminergic neurons; striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers.  相似文献   

8.
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 microg of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 microg of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 microg of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson's disease.  相似文献   

9.
Wang J  Jiang H  Xie JX 《Neurochemical research》2004,29(12):2239-2243
The early changes in iron level and neuronal loss in rat nigrostriatal system were investigated using 6-hydroxydopamine (6-OHDA) unilaterally lesioned rats. The results showed that: 1, 3, 5, 7, and 14 days of postlesion, there was a progressive reduction in the density of the tyrosine hydroxylase immunoreactive (TH-ir) cells in the lesioned substantia nigra (SN). Iron level increased in the lesioned SN from 1–14 days following 6-OHDA lesions, but there were no differences in iron level among them. Only on 14 days of postlesion, did the DA release decrease in striatum (Str) of the lesioned side, while there were no changes in other groups. These results implied that the increased iron level in SN occured when there was a moderate reduction of DA neurons. However, the DA release in Str was unchanged until TH-ir cells were highly reduced due to the immense compensatory mechanism of the DA system.  相似文献   

10.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

11.
Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.  相似文献   

12.
A complete unilateral lesion of the nigrostriatal pathway by 6-hydroxydopamine injection in the substantia nigra induced a drastic increase in striatal dopaminergic binding sites labelled by 3H-spiperone, 30 days after the lesion. This increase (75% over controls) was time restricted: it was only 39% and 34% over control values at respectively 25 and 35 days after the lesion. Furthermore, 45 days after the destruction of the substantia nigra, the density of labelled sites returned close to the homolateral control values, but remained higher than the contralateral ones, according to the right-left difference found in control animals. Quite later (2 years after the lesion), there was a decrease in the density of labelled sites as compared to the respective homolateral control levels. However, such binding sites tend to remain higher in the striatum of the lesioned side than in the striatum of the intact one, although such a difference was not statistically significant, being very close to the right-left asymmetry observed in control animals. Contrary to our previous results with 3H-Haloperidol, the apparent dissociation constant did not vary significantly, whatever the considered delay after the lesion. These results are discussed in the light of previous results obtained by others and by us.  相似文献   

13.
Extracellular concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid were measured by microdialysis in rat striatum 1 month after a unilateral infusion via a dialysis probe of a high concentration (10 mM) of 1-methyl-4-phenylpyridinium ion (MPP+) into the substantia nigra. The basal extracellular DA concentration at the lesioned side was about 20% of the concentration at the nonlesioned side. However, basal DOPAC dialysate levels from the lesioned striatum represented only 2.4% of those from the contralateral side. Intrastriatal infusion with nomifensine increased the dialysate content of DA about twofold and eightfold at the lesioned and nonlesioned sides, respectively. Co-infusion of nomifensine with (-)-sulpiride caused an additional pronounced rise of the DA output on top of the nomifensine-induced increase at the nonlesioned side, whereas no effect was observed at the lesioned side. Finally, MPP+ (10 mM) was infused for 45 min into both striata. The increase in the dialysate content of DA in response to MPP+ (considered as an index of the total striatal DA content) from the lesioned side was only 0.6% of the MPP(+)-induced DA increase from the nonlesioned side. A strong compensatory response to increased extracellular dopamine was observed in the ipsilateral striatum. This effect was achieved by a severe suppression of reuptake mechanisms, as well as of the autoreceptor feedback response. It is concluded that infusion of MPP+ into the substantia nigra can be used as a chronic biochemical model for clinically manifest parkinsonism.  相似文献   

14.
The localization of gamma-aminobutyric acid transaminase (GABA-T), the degrading enzyme for γ-aminobutyric acid, was examined in the striatum and substantia nigra using biochemical techniques. Selective destruction of the nigrostriatal dopaminergic system with 6-hydroxydopamine had no effect on the activity of GABA-T in either the striatum or the substantia nigra, although striatal tyrosine hydroxylase activity was reduced by half. Intrastriatal injection of kainic acid in adult rats resulted in a significant dose-dependent decrease in GABA-T activity in both the striatum and the substantia nigra. The decrease in both of these regions was significantly correlated with the decrease in the GABA synthetic enzyme glutamate decarboxylase (GAD). The intrastriatal injection of kainic acid in ten day old rats did not affect striatal GAD or GABA-T activities, although striatal choline acetyl-transferase activity was reduced by half.It is concluded that the GABA-T activity in the striatum is predominantly localized in neuronal elements, although not, apparently, in cholinergic neurons. Some GABA-T activity is also present in the terminals of the striatonigral neurons. However, the dopaminergic nigrostriatal neurons do not appear to contain GABA-T. It is suggested that high GABA-T activity may be characteristic of GABA neurons.  相似文献   

15.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

16.
To study the relationship between tissue accumulation of Zinc (Zn) and neurodegeneration in the nigrostriatal dopaminergic pathway,65Zn distribution in this pathway was examined after unilateral injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra of rats. When65ZnCl2 was intravenously injected 4 days after treatment with 6-OHDA,65Zn was concentrated in the ipsilateral substantia nigra 6 days after65Zn injection. On the other hand, 19 d after treatment with 6-OHDA,65Zn distribution in the ipsilateral substantia nigra was decreased to the level of the contralateral one. When NH4 99TcO4, which cannot go through the blood-brain barrier, was injected into rats 4 d after treatment with 6-OHDA,99Tc was concentrated in the ipsilateral substantia nigra 30 min after99Tc injection, but no longer detectable 6 d after injection. These results suggest that Zn is necessary for a repair process called replacement gliosis after the death of neurons and that excess Zn does not accumulate in the lesion after completion of the gliosis.  相似文献   

17.
18.
Unilateral 6-hydroxydopamine lesion of the substantia nigra reduced the volume of striatal necrosis and suppressed the increase in extracellular glutamate concentration in the striatum induced by middle cerebral artery occlusion in rats. These results indicate that the dopaminergic nigrostriatal pathway is highly involved in the vulnerability of the striatum to ischemia and suggest that glutamate-dopamine interactions may play a key role in the striatal ischemic insult.  相似文献   

19.
5-Hydroxytryptamine1A (5-HT1A) receptors are expressed in the prefrontal cortical interneurons. Among these interneurons, calcium-binding protein parvalbumin (PV)-positive fast spiking (FS) interneurons play an important role in regulatory function of the prefrontal cortex. In the present study, the response of medial prefrontal cortex (mPFC) FS interneurons to the selective 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on PV-positive neurons were examined in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) by using extracellular recording and double-labeling immunofluorescence histochemistry. Systemic administration of 8-OH-DPAT (1-243 μg/kg, i.v.) dose-dependently inhibited the mean firing rate of the FS interneurons in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition in the lesioned rats (243 μg/kg) was significantly higher than that of sham-operated rats (27 μg/kg). Furthermore, the local application of 8-OH-DPAT (0.01 μg) in the mPFC inhibited the FS interneurons in sham-operated rats, while having no effect on firing rate of the FS interneurons in the lesioned rats. In contrast to sham-operated rats, the lesion of the SNc in rats did not cause the change of PV-positive neurons in the prelimbic prefrontal cortex, a subregion of the mPFC, whereas the lesion of the SNc markedly reduced in percentage of PV-positive neurons expressing 5-HT1A receptors. Our results indicate that degeneration of the nigrostriatal pathway results in the decreased response of FS interneurons in the mPFC to 5-HT1A receptor stimulation, which attributes to down-regulation of 5-HT1A receptor expression in these interneurons.  相似文献   

20.
There is increasing evidence that, in addition to its function as the main neurotransmitter in the nigrostriatal pathway, dopamine (DA) may be neurotoxic in certain conditions. In this study, the toxicity of DA was assessed by direct injection into the substantia nigra of anaesthetised rats, and its effects were compared with those of 6-hydroxydopamine. Brains were removed 1, 2 and 3 weeks after the lesion for histological or neurochemical analysis. DA caused a significant loss of 35% of tyrosine hydroxylase-positive neurons in the pars compacta of substantia nigra and a 40% reduction of striatal DA content. Cells with signs compatible with both apoptosis and autophagy were observed. GADD153, a parameter of endoplasmic reticulum stress, was strongly induced by 6-hydroxydopamine but not by DA. DA increased the α-synuclein content 1 week after the lesion (but not at the later times analyzed) in tyrosine hydroxylase-positive and in non-dopaminergic fibers of pars reticulata. The α-synuclein increase may be a physiological temporal response to DA accumulation and/or to cell damage, but the simultaneous presence of α-synuclein and DA in the cell cytoplasm at concentration higher than normal is not exempt from risk. In fact, their incubation in a free cell system gives a stable dimerized form of α-synuclein that has been described as the critical rate-limiting step for its abnormal fibrillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号