首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
During their development from progenitor cells, adipocytes not only express enzymatic activities necessary for the storage of triglycerides, but also achieve the capability to produce a number of endocrine factors such as leptin, tumor necrosis factor alpha (TNFalpha), complement factors, adiponectin/adipoQ, plasminogen activator inhibitor-1 (PAI-1), angiotensin II and others. Angiotensin II is produced from angiotensinogen by the proteolytic action of renin and angiotensin-converting enzyme; and several data point to the existence of a complete local renin-angiotensin system in adipose tissue, including angiotensin II receptors. In this study, we directly monitored the production of angiotensin II type one receptor (AT1) and angiotensin II type two receptor (AT2) proteins during the adipose conversion of murine 3T3-L1 preadipocytes by immunodetection with specific antibodies. AT1 receptors could be detected throughout the whole differentiation period. The strong AT2 signal in preadipocytes however was completely lost during the course of differentiation, which suggests that expression of AT2 receptors is inversely correlated to the adipose conversion program.  相似文献   

2.
3.
4.
The adenylyl cyclase system of preadipocytes derived from the stromal vascular fraction of perirenal rat fat pads was characterized. Unlike mature adipocytes, preadipocyte adenylyl cyclase was only weakly stimulated by catecholamines and adrenocorticotrophic hormone, but was stimulated by guanine nucleotides. Parathyroid hormone and 2-chloroadenosine also stimulated preadipocyte adenylyl cyclase. The adenylyl cyclase system of preadipocytes resembled that of undifferentiated 3T3-L1 cells. However, agents which induced the differentiation of the 3T3-L1 cell adenylyl cyclase system did not have a similar effect on preadipocytes. A medium (CDM6) which induced some differentiation of preadipocyte adenylyl cyclase was developed. The observations that the adenylyl cyclase system of preadipocytes and undifferentiated 3T3-L1 cells are similar, that preadipocyte adenylyl cyclase can be induced to develop along lines similar to early differentiation of 3T3-L1 cells, and that the adenylyl cyclase system of fully-differentiated 3T3-L1 cells has characteristics intermediate between preadipocytes and adipocytes, suggest that the differentiation of preadipocyte and 3T3-L1 adenyly cyclase in vitro mimics adipose adenylyl cyclase development in vivo. The increased catecholamine and ACTH stimulation, and reduced GTP and adenosine sensitivities of adipocytes compared to preadipocytes suggest that a number of genes affecting adenylyl cyclase-associated regulatory and receptor proteins are coordinately repressed and derepressed during development.  相似文献   

5.
6.
Exposure of preadipocytes to long-chain fatty acids induces the expression of several markers of adipocyte differentiation. In an attempt to identify novel genes and proteins that are regulated by fatty acids in preadipocytes, we performed a substractive hybridization screening and identified PTX3, a protein of the pentraxin family. PTX3 mRNA expression is transient during adipocyte differentiation of clonal cell lines and is absent in fully differentiated cells. Stable overexpression of PTX3 in preadipocytes has no effect on adipocyte differentiation. In line with this, PTX3 mRNA is expressed in the stromal-vascular fraction of adipose tissue, but not in the adipocyte fraction; however, in 3T3-F442A adipocytes, the PTX3 gene can be reinduced by tumor necrosis factor alpha (TNFalpha) in a dose-dependent manner. This effect is accompanied by PTX3 protein secretion from both 3T3-F442A adipocytes and explants of mouse adipose tissue. PTX3 mRNA levels are found to be higher in adipose tissue of genetically obese mice versus control mice, consistent with their increased TNFalpha levels. In conclusion, PTX3 appears as a TNFalpha-induced protein that provides a new link between chronic low-level inflammatory state and obesity.  相似文献   

7.
Adipocyte differentiation is a complex developmental process forming adipocytes from various precursor cells. The murine 3T3-L1 preadipocyte cell line has been most frequently used in the studies of adipocyte differentiation. Differentiation of 3T3-L1 preadipocytes includes a medium containing fetal bovine serum (FBS) with hormonal induction. In this study, we observed that differentiation medium containing adult bovine serum (ABS) instead of FBS did not support differentiation of preadipocytes. Impaired adipocyte differentiation was due to the presence of a serum protein factor in ABS that suppresses differentiation of preadipocytes. Using a proteomic analysis, alpha-2-macroglobulin and paraoxonase/arylesterase 1, which were previously shown to suppress differentiation of preadipocytes, were identified as anti-adipogenic proteins. Although their functional mechanisms have not yet been elucidated, the anti-adipogenic effects of these proteins are discussed. [BMB Reports 2013; 46(12): 582-587]  相似文献   

8.
Sex steroid hormones are important factors in the determination of fat distribution and accumulation. The aim of this study was to investigate the effect of testosterone (T), 17beta-estradiol (17betaE), and progesterone (P) on adrenergic receptor (AR) gene expression in 3T3-L1 preadipocytes and adipocytes and their relation to the proliferation and differentiation processes. Our data clearly show that alpha(2A)-AR was the highest AR subtype expressed in preadipocytes, whereas in mature adipocytes was by far beta(3)-AR. In the differentiation process to adipocytes, alpha(2A)-AR expression was decreased to 0.3-fold (P < 0.01), whereas beta(3)-AR was upregulated 578-fold (P < 0.001) compared with preadipocytes. In addition, the expression of alpha(2A)-AR in preadipocytes was increased upon incubation with T, 17betaE, and P, and a stimulation of proliferation was also observed in 17betaE- and P-treated cells. In mature adipocytes, 17betaE and P enhanced both alpha(2A)- and beta(3)-AR gene expression (although the effects on beta(3)-AR mRNA levels could be more relevant, since beta(3)-AR was the most highly expressed), whereas T only increased alpha(2A)-AR mRNA levels. Leptin and adipocyte fatty acid-binding protein mRNA levels were higher after 17betaE and P treatment, possibly indicating a proadipogenic effect of these hormones. In conclusion, this study indicates that AR gene expression is affected by these hormones in both preadipocytes and adipocytes, which could have potential importance when considering the role of ARs in the mechanisms underlying the sex-related differences in adipose tissue regional distribution.  相似文献   

9.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

10.
11.
12.
Given the substantial rise in obesity, depot-specific fat accumulation and its associated diseases like diabetes, it is important to understand the molecular basis of depot-specific adipocyte differentiation. Many studies have successfully exploited the adipocyte differentiation, but most of them were not related to depot-specificity, particularly using freshly isolated primary preadipocytes. Using 2-dimensional polyacrylamide gel electrophoresis coupled with sequencing mass spectrometry, we searched and compared the proteins differentially expressed in undifferentiated and differentiated preadipocytes from bovine omental, subcutaneous and intramuscular adipose depots. Our proteome mapping strategy to identify differentially expressed intracellular proteins during adipogenic conversion revealed 65 different proteins that were found to be common for the three depots. Further, we validated the differential expression for a subset of proteins by immunoblotting analyses. The results demonstrated that many structural proteins were down-regulated during differentiation of preadipocytes from all the depots. Most up-regulated proteins like Ubiquinol–cytochrome-c reductase complex core protein I (UQCRC1), ATP synthase D chain, Superoxide dismutase (SOD), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Sulfotransferase 1A1 (SULT1A1), Carnitine O-palmitoyltransferase 2 (CPT2) and Heat-shock protein beta 1 (HSPB1) across the three depots were found to be associated with lipid metabolism and metabolic activity. Further, all the up-regulated proteins were found to have higher protein expression in omental than subcutaneous or intramuscular depots.  相似文献   

13.
14.
15.
In order to study the ontogenesis of the beta- and alpha 2-adrenergic control of lipolysis during the adipose conversion process, a model based on preadipocytes isolated from the stromal-vascular fraction of hamster adipose tissue was developed. When cultured in an ITT (insulin, transferrin, triiodothyronine) medium supplemented with 2% fetal calf serum, adipose precursors differentiated into adipose-like cells. On 8-day-post-confluent differentiating preadipocytes, the rank order of potency of activation of lipolysis by various beta-adrenergic agonists (BRL37344 greater than norepinephrine = isoproterenol greater than epinephrine greater than fenoterol) was equivalent to that determined in mature adipocytes isolated from adult hamster adipose tissue. On 8-day-post-confluent differentiating preadipocytes, phenylisopropyladenosine (A1-adenosine agonist) and prostaglandin E1 evoked a strong antilipolytic response whereas that evoked by UK 14304 and clonidine (alpha 2-adrenergic agonists) remained undetectable at this step of differentiation. The activity of UK 14304 and clonidine only appeared on 20- to 25-day-post-confluent differentiating preadipocytes. They induced dose-dependent antilipolysis with a maximal effect reaching 80-85% inhibition of adenosine deaminase-stimulated lipolysis. Their action was blocked by increased concentrations of different alpha 2-adrenergic antagonists with the following order of potency, RX 821002 greater than phentolamine much greater than yohimbine. This order of potency was similar to that determined on mature adipocytes isolated from adult hamsters. Both the density of the alpha 2-adrenoceptors, identified with the selective alpha 2-adrenergic radioligand [3H]RX-821002 (19 +/- 1 vs. 30 +/- 1 fmol/mg protein: P less than 0.01) and the amount of Gi proteins identified by pertussis toxin-catalyzed ADP-ribosylation (31 +/- 4 vs. 43 +/- 4% of the amount defined in mature fat cells from adult hamsters: P less than 0.05) were significantly increased between 8 days and 20-25 days after confluence, explaining the late emergence of the alpha 2-adrenergic control of lipolysis during preadipocyte differentiation. In conclusion, the late emergence of the alpha 2-adrenergic control of lipolysis, which is also supported by previous data obtained in vivo that demonstrated the age and/or the fat cell size dependence of alpha 2-adrenoreceptor expression in mature adipocytes, allows the alpha 2-adrenoceptor to be considered as a marker of adipocyte hypertrophy.  相似文献   

16.
The cyclic adenosine-monophosphate (cAMP) pathway is generally recognized as one of the essential pathways for the adipose conversion of rodent preadipocytes in vitro. However, divergent effects of cAMP on adipocyte differentiation have also been reported. Since there is very little data on non-rodent preadipose cells, the aim of the present work was to analyze the effects of classic activators of the cAMP pathway on the proliferation and differentiation of porcine preadipocytes grown either in serum-free or in serum-containing medium. In both media, the addition of 10 microM forskolin from day 1 after cell plating to day 3 or 7 did not affect cell proliferation. Such stimulations also failed to enhance preadipocyte differentiation, as assessed by the measurement of lipoprotein lipase (LPL) and glycerol 3-phosphate dehydrogenase (GPDH) activities, two markers of adipose conversion. Similar results were obtained when various concentrations of forskolin (0.1 nM-100 microM) were added for 2 days either during the growth phase (days 1-3) or after confluence (days 5-7). Addition of methylisobutylxanthine (MIX) or 8-bromo-cAMP was also found inefficient to stimulate porcine preadipocytes differentiation clearly. By contrast, post-confluence treatment of the murine 3T3-L1 cell line with either forskolin or MIX markedly enhanced lipid accumulation and led to a dramatic increase in GPDH activity (up to 120 times). This indicates that similar culture conditions are adipogenic for the murine 3T3-L1 preadipocytes but not for porcine preadipose cells. In summary, this work clearly highlights the finding that porcine preadipocytes do not respond to classic activators of the cAMP pathway like rodent cells do. This calls in question again the general model proposed for the action of this pathway in adipose conversion and suggests that the mechanisms regulating adipocyte differentiation may differ among species.  相似文献   

17.
18.
19.
Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts   总被引:9,自引:0,他引:9  
Jessen BA  Stevens GJ 《Gene》2002,299(1-2):95-100
The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. Changes in gene expression were measured by DNA microarrays at three time points (24 h, 4 days, and 1 week) during the course of differentiation from preadipocytes to mature adipocytes. Several functional categories of genes were affected by adipocyte conversion. In addition, seven genes were found to be commonly altered by 5-fold or more by adipocyte conversion at all three time points. Lipocalin 2, haptoglobin, serum amyloid A3, stearoyl-CoA desaturase, and 11beta-hydroxysteroid dehydrogenase 1 were induced while actin alpha2 and procollagen VIII alpha1 were suppressed by adipocyte differentiation. Further study of the regulation of these genes and pathways will lead to an increased understanding of the biochemical pathways involved in adipocyte differentiation and possibly to the identification of new therapeutic targets for treatment of obesity and other metabolic diseases.  相似文献   

20.
Alkaline phosphatase (ALP) is expressed in 3T3-L1 preadipocytes, and its activity increases during adipogenesis. The purpose of this study was to determine whether ALP activity could be used as a measure of intracellular lipid accumulation in human preadipocytes and 3T3-L1 cells and which of the factors that induce adipogenesis are responsible for stimulating ALP activity. Adipogenesis was initiated in 3T3-L1 cells by incubation with differentiation medium containing insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. The effect of leaving out each of the differentiation medium components was studied. Adipogenesis was also assessed in human preadipocytes and 3T3-L1 cells in the presence of the ALP inhibitor histidine. ALP activity was measured using an automated colorimetric assay and intracellular lipid accumulation was measured using the lipid-specific dye oil red O. Removal of insulin or dexamethasone from the differentiation medium had little effect on either ALP activity or lipid accumulation in 3T3-L1 cells, while removal of IBMX blocked both. Histidine inhibited ALP activity and adipogenesis in human preadipocytes and 3T3-L1 cells. Pearson univariate correlation analysis demonstrated strong correlations between ALP activity and lipid accumulation in human preadipocytes (r=0.78, n=69) and in 3T3-L1 cells (r=0.92, n=27). These data suggest that ALP and fat storage are tightly linked during preadipocyte maturation and that the measurement of ALP activity may be a novel technique for the quantification of intracellular lipid accumulation that is more sensitive and rapid than currently used methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号