首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleiotropic Menaquinone-Deficient Mutant of Bacillus subtilis   总被引:4,自引:4,他引:0  
A multiple aromatic amino acid auxotroph of Bacillus subtilis 168 has been isolated which is unable to synthesize menaquinone-7 (MK-7) unless supplied with shikimic acid (SHK). The mutant, RB163, was isolated by selecting for resistance to low levels (1.5 mug/ml) of kanamycin. Enzymatic and genetic analyses show that the strain is an aroD mutant lacking 5-dehydroshikimate reductase. Under growth conditions in which its MK-7 deficiency is expressed, RB163 is deficient in cytochromes a, b, and c, exhibits low growth yields, and does not sporulate. Genetic analysis indicates that this pleiotropic phenotype is the result of a single genetic event. All phenotypic characteristics are reversible when the mutant is grown under conditions such that MK is synthesized. Comparison of strain RB163 with other aro mutants blocked before SHK ("early-aro" mutants) reveals interesting differences. Most early-aro mutants are cytochrome- and MK-sufficient, sporogenous, and sensitive to kanamycin when grown in the absence of SHK. However, in addition to strain RB163, two other aro mutants were found to show the pleiotropic phenotype. These three mutants have in common, and differ from other early-aro strains in, the inability to synthesize MK. It is suggested that the phenotypically wild-type aro mutants are bradytrophic, allowing enough substrate flow through the common aromatic pathway to satisfy the MK requirement. The pleiotropic mutants are thought to be completely blocked in the common pathway, thus accounting for their inability to synthesize MK.  相似文献   

2.
Two Bradyrhizobium japonicum cytochrome mutants were obtained by Tn5 mutagenesis of strain LO and were characterized in free-living cultures and in symbiosis in soybean root nodules. One mutant strain, LO501, expressed no cytochrome aa3 in culture; it had wild-type levels of succinate oxidase activity but could not oxidize NADH or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The cytochrome content of LO501 root nodule bacteroids was nearly identical to that of the wild type, but the mutant expressed over fourfold more bacteroid cytochrome c oxidase activity than was found in strain LO. The Tn5 insertion of the second mutant, LO505, had a pleiotropic effect; this strain was missing cytochromes c and aa3 in culture and had a diminished amount of cytochrome b as well. The oxidations of TMPD, NADH, and succinate by cultured LO505 cells were very similar to those by the cytochrome aa3 mutant LO501, supporting the conclusion that cytochromes c and aa3 are part of the same branch of the electron transport system. Nodules formed from the symbiosis of strain LO505 with soybean contained no detectable amount of leghemoglobin and had no N2 fixation activity. LO505 bacteroids were cytochrome deficient but contained nearly wild-type levels of bacteroid cytochrome c oxidase activity. The absence of leghemoglobin and the diminished bacterial cytochrome content in nodules from strain LO505 suggest that this mutant may be deficient in some aspect of heme biosynthesis.  相似文献   

3.
A mutant of Paracoccus denitrificans which is deficient in c-type cytochromes grows aerobically with generation times similar to those obtained with a wild-type strain. The aa3-type oxidase is functional in the mutant as judged by spectrophotometric assays of cytochrome c oxidation using the membrane particles and cytochrome aa3 reduction in whole cells. The cytochrome c oxidase (aa3-type) of the c-less mutant oxidizes soluble cytochrome c at rates equivalent to those obtained with the wild-type. NADH and succinate oxidase activities of the membrane preparations of the mutant and wild-type are also comparable in the absence of detergent treatment. Exogenous soluble cytochrome c can be both reduced by NADH- and succinate-linked systems and oxidized by cytochrome aa3 present in membranes of the mutant strain. Rapid overall electron transport can occur in the c-less mutant, suggesting that reactions result from collision of diffusing complexes.  相似文献   

4.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

5.
The halophilic archaebacterium, Halobacterium halobium has been found to contain four different b-type cytochromes. The four components were recognized by their potentiometric characteristics in situ in their functional environment in the membrane of H. halobium. Oxidation-reduction midpoint potentials of these four b-type cytochromes were determined to be +261, +160, +30, and -153 mV, respectively. We also demonstrate that the pathway involved in the transport of reducing equivalents from succinate to oxygen proceeds through the b-type cytochromes with oxidation-reduction midpoint potentials of +261 and +161 mV. The cytochrome with oxidation-reduction midpoint potential of -153 mV was not substrate reducible by NADH but was chemically reducible by dithionite. Antimycin inhibits reduction of b-type cytochrome in the succinate pathway, but has no effect on b-type cytochrome reduction when reducing equivalents are provided by NADH. The carbon monoxide difference spectrum of H. halobium membranes shows at least one carbon monoxide-binding b-type cytochrome, indicating a terminal oxidase. A scheme for electron transport in H.halobium involving the b-type cytochromes and terminal oxidase is suggested.  相似文献   

6.
Membrane vesicles were prepared from Micrococcus denitrificans by osmotic shock of lysozyme spheroplasts. These vesicles concentrated 4 amino acids via two systems; one for glycine-alanine and the other for asparagine-glutamine. Amino acid transport was coupled to the membrane-bound electron transport system and involved interactions of the primary dehydrogenases, cytochromes, cytochrome oxidase and oxygen. After transport the amino acids were recovered unchanged from the vesicles. The substrates of the membrane-bound electron transport system d-lactate, l-lactate, formate, succinate, NADH, glucose-6-phosphate and α-glycerolphosphate all stimulated transport at least 2-fold. Both oxygen and nitrate could serve as terminal electron acceptors with vesicles prepared from cells grown anaerobically with nitrate. Anaerobic transport in the presence of nitrate was not inhibited by cyanide but was inhibited by nitrite. A system stimulated by substrates of the electron transport system but independent of added terminal electron acceptors was found also in the vesicles prepared from anaerobically grown cells. Addition of one combination of two substrates for electron transport produced an amino acid uptake 12 to 15% greater than the sum of the rates for each substrate added singly. Additions of other combinations gave rates of transport less than the sum of the rates of each added alone. Both the dehydrogenase activities and the coupling of electron transport to amino acid uptake were modified by changing the growth conditions and differences between the effectiveness of each substrate for each of the two transport systems could be detected. The efficiency of the vesicles per protoheme, the prosthetic group of the membrane-bound cytochrome b, with d-lactate as substrate was 27% for glutamine and 6% for glycine of the rates of transport of these two amino acids in intact cells when driven by endogenous respiration. Assuming one amino acid transported per electron, the transport of glycine utilized 1% of the respiratory capacity with glucose-6-phosphate as substrate. The coupling to the electron transport with the other substrates was less efficient. It appeared that a small portion of the total capacity of the electron transport system was coupled to amino acid transport and the coupling to respiration, as well as the primary dehydrogenase activities and terminal cytochrome oxidase, were modified in response to the conditions of growth.  相似文献   

7.
A temperature-sensitive respiration-deficient mutant of yeast lacks hemoproteins and accumulates coproporphyrin III when cultivated at elevated temperatures. Cells grown at 20 C respired normally and contained cytochromes a, b, and c. Cells grown at 35 C showed respiration-deficient mutant characters; they did not respire, lacked cytochromes, and accumulated coproporphyrin III. Addition of protoporphyrin IX or protohemin IX to the culture medium restored the respiratory activity of this mutant during growth at 35 C. The activities of various enzymes, including succinate-2,6-dichlorophenol indophenol (DCPIP), reduced nicotinamide adenine dinucleotide (NADH(2))-DCPIP, succinate-cytochrome c, and NADH(2)-cytochrome c oxidoreductase, and cytochrome oxidase, and the cytochrome c content of cells cultured in various conditions were determined. Changes in the number and structure of mitochondria were associated with changes in respiratory activity.  相似文献   

8.
The enzymatic activities and the cytochrome components of the respiratory chain were investigated with membrane fractions from chemoheterotrophically growth Rhodopseudomonas palustris. Whereas the level of electron transfer carriers was not distinctly affected by a change of the culture conditions, the potential activities of the enzymes were clearly increased when the cells were grown aerobically. Reduced-minus oxidized difference spectra of the membrane fractions prepared from dark aerobically grown cells revealed the presence of three beta-types cytochromes b561, b560 and b558, and at least two c-type cytochromes c556 and c2 as electron carriers in the electron transfer chain. Cytochrome of a-type could not be detected in these membranes. Reduced plus CO minus reduced difference spectra of the membrane fractions were indicative of cytochrome o, which may be equivalent to cytochrome b560, appearing in substrate-reduced minus oxidized difference spectra. Cytochrome o was found to be the functional terminal oxidase. CO difference spectra of the high speed supernatant fraction indicated the presence of cytochrome c'. Succinate and NADH reduced the same types of cytochromes. However, a considerable amount of cytochrome b561 with associated beta and gamma bands at 531 and 429 nm, respectively, was reducible by succinate, but not by NADH. A substantial fraction of the membrane-bound b-type cytochrome was non-substrate reducible and was found in dithionite-reduced minus substrate-reduced spectra. Cytochrome c2 may be localized in a branch of the electron transport system, with the branch-point at the level of ubiquinone. The separate pathways rejoined at a common terminal oxidase. Two terminal oxidases with different KCN sensitivity were present in the respiratory chain, one of which was sensitive to low concentrations of KCN and was connected with the cytochrome chain. The other terminal oxidase which was inhibited only by high concentrations of cyanide was located in a branched pathway, through which the electrons could flow from ubiquinone to oxygen bypassing the cytochrome chain.  相似文献   

9.
The effect of antimycin on (i) the respiratory activity of the KCN-insensitive pathway of mitochondria of Neurospora grown on chloramphenicol (chloramphenicol-grown) with durohydroquinone and succinate or NADH as substrate, (ii) the electron transfer from the b-type cytochromes to ubiquinone with durohydroquinone as electron donor as well as (iii) the electron transfer from the b-type cytochromes to duroquinone with succinate as electron donor in chloramphenicol-grown Neurospora and beef heart submitochondrial particles was studied. All experiments were performed in the uncoupled state. 1. The respiratory chain of chloramphenicol-grown Neurospora mitochondria branches at ubiquinone into two pathways. Besides the cytochrome oxidase-dependent pathway, a KCN-insensitive branch equiped with a salicylhydroxamate-sensitive oxidase exists. Durohydroquinone, succinate or NADH are oxidized via both pathways. The durohydroquinone oxidation via the KCN-insensitive pathway is inhibited by antimycin, wheras the succinate or NADH oxidation is not. The titer for ful inhibition is one mol antimycin per mol cytochrome b-563 or cytochrome b-557. 2. The electron transfer from durohydroquinone to ubiquinone, which takes place in the KCN-inhibited state, does not occur in the antimycin-inhibited state. 3. The reduction of duroquinone by succinate in the presence of KCN is inhibited by antimycin. The titer for full inhibition is one mol antimycin per mol cytochrome b-566 or cytochrome b-562 for beef heart (or cytochrome b-563 or cytochrome b-557 for Neurospora). 4. When electron transfer from the b-type cytochromes to cytochrome C1, ubiquinone and duroquinone is inhibited by antimycin, the hemes of cytochrome b-566 and cytochrome b-562 (or cytochrome b-563 and cytochrome b-557) are in the reduced state. 5. The experimental results suggest that the two b-type cytochromes form a binary complex the electron transferring activity of which is inhibited by antimycin, the titer for full inhibition being one mol of antimycin per mol of complex. The electron transfer from the b-type cytochromes to ubiquinone is inhibited in a non-linear fashion.  相似文献   

10.
The membrane fraction of Bacterionema matruchotii contains an electron transport chain with oxidizing activity for NADH and succinate. Respiration was inhibited by KCN, 2-heptyl-4-hydroxyquinoline-N-oxide, UV light irradiation and CO. UV light irradiation, analysis of membrane extracts, and reconstitution of respiration in UV light treated membranes suggested that respiration is mediated by a menaquinone derivative. The membranes contained cytochromes a, b, and c. Inhibition studies and the effect of KCN and CO on the cytochrome spectrum indicated the presence of an a+a3 cytochrome oxidase and cytochrome o. The membrane fraction from cells grown under O2-limiting conditions contained nitrate reductase activity. In B. matruchotii, electron transport is coupled to oxidative phosphorylation as judged by the effects of substrates and inhibitors on the intracellular ATP concentration.  相似文献   

11.
The function of the cytochromes in electron transport from NADH to oxygen in aerobically grown Proteus mirabilis has been determined. 77K-Spectra of cytoplasmic membrane suspensions, frozen while catalyzing electron transport from NADH to oxygen, in the presence as well as in the absence of 2-n-heptyl-4-hydroxyquinoline-N-oxide, have been recorded. Analysis of these 77K-spectra revealed that cytochrome b-563 (E'0 = +140 mV), cytochrome b-556 (E'0 = +140 mV) [or alternatively cytochrome b-563/556 (E'0 = +140 mV)] and cytochrome b-557 (E'0 = +50 mV) may function in a Q or b-cycle. The function of cytochrome c-549 (E'0 = +75 mV), which seems to be present only in a very low concentration, and cytochrome b-556 (E'0 = -105 mV), which reacts very slowly to the addition of NADH and oxygen, remains unclear. Cytochrome o, the main oxidase of aerobically grown P. mirabilis cells, can not be detected by the methods described above. Only when the reduced form of cytochrome o is liganded with carbon monoxide a specific alpha-band can be detected at 569 nm at 25 degrees C and 565 nm at 77K.  相似文献   

12.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

13.
1. The electron-transport mechanism was examined in the ;particulate' and ;supernatant' fractions of disintegrated cells of a Park-Williams strain of Corynebacterium diphtheriae. 2. Succinate-oxidase activity was found mainly in the ;particulate' fraction, and NADH(2) oxidase mainly in the ;supernatant', which was devoid of cytochromes and menaquinone. 3. The sum of the activities of particles and supernatant fractions, with respect to both succinate oxidase and NADH(2) oxidase, was substantially less than that of the crude cell extract from which they were obtained. Full activity was restored on recombining ;particles' and ;supernatant'. The characteristics of this reassembled system were investigated. 4. The strain of organism (CN2000) examined contained cytochromes corresponding spectroscopically to ;a', ;b' and ;c' types. All three were reduced by succinate, lactate or NADH(2); but a portion of the cytochrome b, susceptible to reduction by dithionite, could not be reduced by the substrates. 5. Triton X-100 inhibits oxidation of succinate by particulate fraction; on adding succinate, the reduction of cytochrome b is not affected but that of cytochromes a and c is delayed. 6. Irradiation at 360mmu completely destroys menaquinone in the particle fraction. Succinate oxidation is severely decreased; succinate dehydrogenase and NADH(2) oxidation are little affected. Certain menaquinones will restore succinate oxidation in the irradiated material. 7. On adding succinate to irradiated particulate material cytochrome b is partially reduced at once, but reduction of cytochromes a and c is much delayed. A portion of the cytochrome b remains not reduced, but reduction occurs rapidly on the addition of menaquinone (MK-2).  相似文献   

14.
The stoicheiometry of proton translocation, the amounts of cytochromes firmly bound to membranes, and cell yields with respect to succinate and O(2) have been measured in the facultative methylotroph Pseudomonas AM1 and in the mutant lacking cytochrome c (mutant PCT76) during carbon-limited growth and carbon-excess growth. -->H(+)/O ratios during endogenous respiration of about 4 were measured in wild-type bacteria grown in carbon-excess conditions, and in the mutant in all growth conditions. During methanol- or succinate-limited growth of wild-type bacteria the -->H(+)/O ratio increased to about 6. Cell yields with respect to succinate and O(2) were higher in wild-type than in the mutant lacking cytochrome c by an amount suggesting loss in the mutant of 30% of the ATP-generating capacity of wild-type bacteria. During carbon-limited growth on methanol or succinate some cytochrome c was tightly bound to bacterial membranes, whereas none was tightly bound in bacteria grown in batch-culture or in NH(4) (+)-limited conditions. It is proposed that the role of cytochrome c in Pseudomonas AM1 depends on growth conditions and hence on the ;needs' of the bacteria. During growth in carbon-excess conditions it is only required for methanol oxidation, mediating between methanol dehydrogenase and cytochrome a/a(3). In these conditions oxidation of NADH and succinate by way of cytochrome b and cytochrome a/a(3) occurs without the mediation of cytochrome c. This is the only route for oxidation of NADH and succinate in the cytochrome c-deficient mutant in all growth conditions. During carbon-limited growth the cytochrome c becomes bound to the membrane in such a way that it can mediate between cytochromes b and a/a(3), hence becoming involved in proton translocation and ATP synthesis during NADH and succinate oxidation. An alternative possibility is that in wild-type bacteria the cytochrome c is always involved in electron transport, but that its involvement in measurable proton translocation only occurs in carbon-limited conditions.  相似文献   

15.
The coupling of the quinoprotein glucose dehydrogenase to the electron transport chain has been investigated in Acinetobacter calcoaceticus. No evidence was obtained to support a previous suggestion that the soluble form of the dehydrogenase and the soluble cytochrome b associated with it are involved in the oxidation of glucose. Analysis of cytochrome content, and of reduction of cytochromes in membranes by substrates, and of sensitivity to cyanide indicated that glucose, succinate and NADH are all oxidized by way of the same b-type cytochrome(s) and cytochrome oxidases (cytochrome o and cytochrome d). Mixed inhibition studies [with KCN and hydroxyquinoline N-oxide (HQNO)] showed that the b-type cytochrome(s) formed a binary complex with the o-type oxidase and that there was thus no communication between the electron transport chains at the cytochrome level. Measurements of the reduction of ubiquinone-9 by glucose and NADH, and inhibitor studies using HQNO, indicated that the ubiquinone mediates electron transport from both the glucose and NADH dehydrogenases. In some conditions the quinone pool facilitated communication between the 'glucose oxidase' and 'NADH oxidase' electron transport chains, but in normal conditions these chains were kinetically distinct.  相似文献   

16.
D.L. Knook  J.Van&#x;t Riet  R.J. Planta 《BBA》1973,292(1):237-245
1. The participation of cytochromes in the membrane-bound, nitrate and oxygen respiratory systems of Klebsiella (Aerobacter) aerogenes has been investigated. The membrane preparations contained the NADH, succinate, lactate and formate oxidase systems, and in addition a high respiratory nitrate reductase activity.2. Difference spectra indicated the presence of cytochromes b, a1, d, and o. Cytochromes of the c-type could not be detected in these membranes. Both cytochrome b content and respiratory nitrate reductase activity were the highest in bacteria grown anaerobically in the presence of nitrate.3. Cytochrome b was the only cytochrome which, after being reduced by NADH, could be partially reoxidized anaerobically in the presence of nitrate. Furthermore, nitrate caused a lower aerobic steady state reduction only of cytochrome b.4. NADH oxidase and NADH-linked respiratory nitrate reductase activities were both inhibited by antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide and KCN. NADH oxidase activity was selectively inhibited by CO, while azide was found to inhibit only the respiratory nitrate reductase. In the presence of azide, nitrate did not affect the level of reduction of cytochrome b.5. The evidence presented suggests that cytochrome b is a carrier in the electron transport systems to both nitrate and oxygen; from cytochrome b branching occurs, with one branch linked to the respiratory nitrate reductase and one branch linked to oxidase systems, containing the cytochromes a1, d and o.  相似文献   

17.
Various respiratory electron transport activities of Rhodopseudomonas capsulata were studied in membrane fragments prepared from photosynthetically grown cells of a parental strain and two terminal oxidase-defective mutant strains. The NADH and succinate oxidase activities of the mutant having a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M6, were consideraly more sensitive to inhibition by either antimycin A or cyanide than the corresponding activities of the mutant lacking a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M7. The parental strain, Z-1, but not the mutants, showed biphasic inhibitory responses of NADH and succinate oxidase activities with either antimycin A or cyanide. In certain reactions no differences in inhibitor susceptibility were found among the strains tested, implying that the pathways involved were unaffected in the mutants. In this category were the actions of rotenone on NADH oxidase, antimycin A on cytochrome c reductase and, in M6 and Z-1, cyanide on N,N,N'N'-tetramethyl-p-phenylenediamine oxidase. These results suggest that the respiratory chain of the parental strain branches at the ubiquinone-cytochrome b region into two pathways, each branch goes to a distinct terminal oxidase, and either may be blocked independently by genetic mutation.  相似文献   

18.
The control of the synthesis of certain key enzymes of aromatic amino acid biosynthesis was studied. Tyrosine represses the first enzyme of the 3-deoxy-d-arabino heptulosonic acid 7-phosphate pathway, DAHP synthetase, as well as shikimate kinase and chorismate mutase about fivefold in cultures grown under conditions limiting the synthesis of the aromatic amino acids. A mixture of tyrosine and phenylalanine represses twofold further. Tryptophan does not appear to be involved in the control of these enzymes. The specific activity of at least one early enzyme, dehydroquinase, remains essentially constant under a variety of nutritional supplementations. Two enzymes in the terminal branches are repressed by the amino acids they help to synthesize: prephenate dehydrogenase can be repressed fourfold by tyrosine, and anthranilate synthetase can be repressed over 200-fold by tryptophan. There is no evidence that phenylalanine represses prephenate dehydratase. Regulatory mutants have been isolated in which various enzymes of the pathway are no longer repressible. One class is derepressed for several of the prechorismate enzymes, as well as chorismate mutase and prephenate dehydrogenase. In another mutant, several enzymes of tryptophan biosynthesis are no longer repressible. Thus, the rate of synthesis of enzymes at every stage of the pathway is under control of various aromatic amino acids. Tyrosine and phenylalanine control the synthesis of enzymes involved in the synthesis of the three aromatic amino acids. Each terminal branch is under the control of its end product.  相似文献   

19.
The electron transport system of Acinetobacter sp. HO1-N was studied to determine the specific cytochromes and to measure changes in the composition of the respiratory system due to growth in various concentrations of oxygen or types of growth substrates. Spectrophotometric analysis revealed that the quantity and types of cytochromes changed in response to growth under various concentrations of oxygen. Growth on alkane and nonalkane substrates resulted in only minor differences in cytochrome composition or oxidase activities. Membranes prepared from cells grown under oxygen-limiting conditions contained at least one b-type cytochrome, cytochrome o, cytochrome d, and slight traces of cytochrome a1, whereas membranes prepared from cells grown in the presence of high oxygen concentrations contained only low levels of cytochromes b and o. Polarographic measurements, electron transport inhibitor studies, and photoaction spectrum analyses indicated that cytochromes o, a1, and d were potentially capable of functioning as terminal oxidases in this organism. These experiments also revealed that all three cytochromes may be involved in the oxidation of reduced nicotinamide adenine dinucleotide, succinate, or N,N,N',N'-tetramethyl-p-phenylenediamine.  相似文献   

20.
Membranes isolated from Bacillus cereus ATCC 4342 during vegetative growth and during sporulation contained cytochromes b, c and a + a(3) as well as flavoprotein as determined from reduced-minus-oxidized difference spectra. Although there appeared to be no qualitative change in the cytochromes, there was a significant increase in the amount of cytochromes associated with membranes isolated from sporulating cells. Succinate and nicotinamide adenine dinucleotide (reduced form) (NADH) reduced the same cytochromes indicating similar pathways of electron transport. The electron transport inhibitors-cyanide, azide, 2-heptyl-4-hydroxyquinoline-N-oxide, dicumarol and atebrine-were examined for their effect on succinate oxidase (succinate: [O(2)] oxidoreductase) and NADH oxidase (NADH: [O(2)] oxidoreductase). NADH oxidase associated with vegetative cell membranes was less sensitive to certain inhibitors than was succinate oxidase, suggesting a branched electron transport pathway for NADH oxidation. In addition to electrons being passed to O(2) through a quinone-cytochrome chain, it appears that these intermediate carriers can be bypassed such that O(2) is reduced by electrons mediated by NADH dehydrogenase. Both oxidases associated with sporulating cell membranes were inhibited to a lesser degree than were the oxidases associated with vegetative cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号