首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total activity of aldolase (EC 4.1.2.13) and the activities of cytosol and chloroplast aldolase were determined in seeds, cotyledons, primary leaves and secondary leaves of spinach (Spinacia oleracea L., cv. Monopa) during germination. Total aldolase activity in cotyledons increased from low levels to a low maximum in the dark after one week and to a high maximum in white light after three to four weeks and declined thereafter. The activity in primary and secondary leaves started to rise strongly from the 18th and 26th days, respectively, up to the 42nd day of germination. The levels of aldolase activity paralleled the development of leaf area, chlorophyll content and protein content per leaf except that the leaf area of cotyledons continued to increase steadily up to the 42nd day after the maximum of aldolase activity was reached. Resolution of cytosol- and chloroplast-specific isoenzymes by chromatography on diethylaminoethylcellulose indicated that in the light the cytosol enzyme represented approx. 8% of the total activity in cotyledons, primary and secondary leaves throughout germination, and the chloroplast enzyme represented the remaining 92%. Only in cotyledons of dark-grown seedlings was the cytosol aldolase between 25 and 50% of the total activity. Seeds contained almost exclusively a cytosol aldolase. In cotyledons the increase of total activity in the light was specifically the consequence of an increase in chloroplast aldolase while the cytosol aldolase was little affected by light. The light effect was mediated by phytochrome as demonstrated by classical induction and reversion experiments with red and far-red light and by continuous far-red light treatment.Abbreviation DEAE-cellulose diethylaminoethylcellulose  相似文献   

2.
Abstract Both class I (Schiff base-forming) and class II (metal-requiring) fructose biphosphate (FDP) aldolases were found to be distributed among halophilic archaebacteria. The type of enzyme did not vary with the growth medium. The aldolase activities were also halophilic.  相似文献   

3.
In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin;O-demethylation; and reduction reactions. Biotransformations of vinylgualacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.  相似文献   

4.
There has been an increasing awareness of the enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivity. Chiral intermediates and fine chemicals are in high demand, both from the pharmaceutical and agrochemical industries, for the preparation of bulk drug substances and agricultural products. Biocatalytic processes have been described for the synthesis of chiral intermediates for beta3- and beta2-receptor agonists, antihypertensive drugs, antiviral agents, melatonin receptor agonists, anticholesterol and anticancer drugs, and drugs to treat Alzheimer's disease.  相似文献   

5.
转酮醇酶(transketolase, TK, EC. 2.2.1.1)是一种焦磷酸硫胺素和二价阳离子依赖性酶,可催化二碳单位的转移,可逆形成C–C键,在多酶催化生产化学品、药物前体和不对称合成方面有广泛应用。文中以大肠杆菌(Escherichia coli) K12转酮醇酶TKTA为研究对象,通过定点饱和突变和组合突变提升对非磷酸化底物的反应活性,并探索突变酶TKTA_M催化合成酒石酸半醛。结果表明:突变酶TKTA_M (R358I/H461S/R520Q)最适反应温度为32℃,最适反应pH为7.0,以D-甘油醛为受体底物的比酶活为(6.57±0.14) U/mg,是野生型比酶活((0.71±0.02) U/mg)的9.25倍。在酶学性质研究的基础上,设计20 mL的反应体系,以50 mmol/L 5-酮基-D-葡萄糖酸和50 mmol/L非磷酸化乙醇醛为底物,TKTA_M催化合成酒石酸半醛,最终酒石酸半醛的产量为3.71g,摩尔转化率为55.34%。研究结果为生物质制备L-(+)-酒石酸提供数据支撑,同时为转酮醇酶催化非磷酸化底物提供了借鉴。  相似文献   

6.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are a class of toxic environmental pollutants that are persistent, bioaccumulative, and difficult to degrade. Their structure is very similar to the thyroid hormone (T4) and uses the body’s thyroid transporter (TTR) binding to interfere with the endocrine balance, disrupting the body’s normal physiological activity. According to Fourier transform infrared spectroscopy and dynamics simulation of do_dssp module analysis, there are three kinds of OH-PBDEs that can induce TTR secondary structural changes. Fluorescence spectra and UV–Vis spectra show that for the three kinds of OH-PBDEs for TTR, the main methods of quenching are static quenching and non-radiative energy transfer. According to thermodynamic analysis, ΔG < 0, ΔH > 0, and ΔS > 0 combine to show that the hydrophobic interaction is the main driving force of the combination. From the molecular docking analysis, it was found that 4′-hydroxy-2,2′,4,5′- tetrabromodiphenyl ether (4′-OH-BDE49) and 4 hydroxy-2,2′,3,4′,5,6,6′- heptabromodiphenyl ether (4-OH-BDE188) had a cationic–π interaction with TTR, whereas 4 hydroxy-2,2′,3,4,5,5′,6- heptabromodiphenyl ether (4-OH-BDE187) was bonded to TTR by hydrogen bonds to form stable complexes. In this paper, we highlight the consistency of spectroscopic experiments and computer simulations so as to provide a reliable analytical method for the toxicological properties of small molecule contaminants.  相似文献   

7.
8.
The interaction of transketolase ketosubstrates with the holoenzyme has been studied. On addition of ketosubstrates cleaving both irreversibly (hydroxypyruvate) and reversibly (xylulose 5-phosphate), identical changes in the CD spectrum at 300-360 nm are observed. The changes in this spectral region, as previously shown, are due to the formation of the catalytically active holoenzyme from the apoenzyme and the coenzyme, and the cleavage of ketosubstrates by transketolase. The identity of the changes in transketolase CD spectrum caused by the addition of reversibly or irreversibly cleaving substrates indicates that in the both cases the changes are due to the formation of an intermediate product of the transketolase reaction—a glycolaldehyde residue covalently bound to the coenzyme within the holoenzyme molecule. Usually, in the course of the transferase reaction, the glycolaldehyde residue is transferred to an aldose (acceptor substrate), resulting in the recycling of the holoenzyme free of the glycolaldehyde residue. The removal of the glycolaldehyde residue from the holoenzyme appears to proceed even in the absence of an aldose. However, the glycolaldehyde cannot be found the free state because it condenses with another glycolaldehyde residue formed in the course of the cleavage of another ketosubstrate molecule yielding erythrulose.  相似文献   

9.
Biocatalysis continues to emerge as a powerful technique for the efficient synthesis of optically pure pharmaceuticals that are difficult to access via conventional chemistry. The power of biocatalysis can be enhanced if two or more reactions can be achieved by a single whole cell biocatalyst containing a pathway designed de-novo to facilitate a required synthetic sequence. The enzymes transketolase (TK) and transaminase (TAm) respectively catalyze asymmetric carbon--carbon bond formation and amine group addition to suitable substrate molecules. The ability of a transaminase to accept the product of the transketolase reaction can allow the two catalysts to be employed in series to create chiral amino-alcohols from achiral substrates. As proof of principle, the beta-alanine: pyruvate aminotransferase (beta-A:P TAm) from Pseudomonas aeruginosa has been cloned, to create plasmid pQR428, for overexpression in E.coli strain BL21gold(DE3). Production of the beta-A:P TAm alongside the native transketolase (overexpressed from plasmid pQR411), in a single E.coli host, has created a novel biocatalyst capable of the synthesis of chiral amino alcohols via a synthetic two-step pathway. The feasibility of using the biocatalyst has been demonstrated by the formation of a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT) product, in up to 21% mol/mol yield, by the beta-A:P TAm, via transamination of L-erythrulose synthesized by TK, from achiral substrates glycolaldehyde (GA) and beta-hydroxypyruvate (beta-HPA). ABT synthesis was achieved in a one-pot process, using either whole cells of the dual plasmid strain or cell lysate, while the dual alcohol-amine functionality of ABT makes it an excellent synthon for many pharmaceutical syntheses.  相似文献   

10.
11.
Three hydroxylated polybrominated diphenyl ethers (OH‐PBDEs), 3‐OH‐BDE‐47, 5‐OH‐BDE‐47, and 6‐OH‐BDE‐47, were selected to investigate the interactions between OH‐PBDEs with human serum albumin (HSA) under physiological conditions. The observed fluorescence quenching can be attributed to the formation of complexes between HSA and OH‐PBDEs. The thermodynamic parameters at different temperatures indicate that the binding was caused by hydrophobic forces and hydrogen bonds. Molecular modeling and three‐dimensional fluorescence spectrum showed conformational and microenvironmental changes in HSA. Circular dichroism analysis showed that the addition of OH‐PBDEs changed the conformation of HSA with a minor reduction in α‐helix content and increase in β‐sheet content. Furthermore, binding distance r between the donor (HSA) and acceptor (three OH‐PBDEs) calculated using Förster's nonradiative energy transfer theory was <7 nm; therefore, the quenching mechanisms for the binding between HSA and OH‐PBDEs involve static quenching and energy transfer. Combined with molecular dynamics simulations, the binding free energies (ΔG bind ) were calculated using molecular mechanics/Poisson ? Boltzmann surface area method, and the crucial residues in HSA were identified.  相似文献   

12.
Based on the importance of the previous fluorinated and/or hydroxylated chalcones studies, thirty-six compounds were designed as phenyl or hydroxyphenyl bearing fluoro, trifluoromethyl or trifluoromethoxy phenyl propenones and synthesized by applying modified Claisen-Schmidt condensation reaction as a single step. Inhibitory effects of the synthesized compounds on ROS production stimulated by LPS in RAW 264.7 macrophage were evaluated. Structure-activity relationship (SAR) study revealed that the compounds possessing para-hydroxyphenyl group combined with meta-fluoro or meta-trifluoromethyl phenyl group, and meta/para-hydroxyphenyl group combined with ortho-trifluoromethoxyphenyl group have an essential role in inhibiting the LPS-stimulated ROS production in RAW 264.7 macrophages. The most significant inhibitory effect on LPS-stimulated ROS production in RAW 264.7 macrophages was observed in compound 30 that possessed para-hydroxyphenyl group along with ortho-trifluoromethoxyphenyl group.  相似文献   

13.
Chemical synthesis of lactones from cycloalkanes is a multi‐step process challenged by limitations in reaction efficiency (conversion and yield), atom economy (by‐products) and environmental performance. A heterologous pathway comprising novel enzymes with compatible kinetics was designed in Pseudomonas taiwanensis VLB120 enabling in‐vivo cascade for synthesizing lactones from cycloalkanes. The respective pathway included cytochrome P450 monooxygenase (CHX), cyclohexanol dehydrogenase (CDH), and cyclohexanone monooxygenase (CHXON) from Acidovorax sp. CHX100. Resting (non‐growing) cells of the recombinant host P. taiwanensis VLB120 converted cyclohexane, cyclohexanol, and cyclohexanone to ?‐caprolactone at 22, 80–100, and 170 U gCDW?1, respectively. Cyclohexane (5 mM) was completely converted with a selectivity of 65% for ?‐caprolactone formation in 2 hr without accumulation of intermediate products. Promiscuity of the whole‐cell biocatalyst gave access to analogous lactones from cyclooctane and cyclodecane. A total product concentration of 2.3 g L?1 and a total turnover number of 36,720 was achieved over 5 hr with a biocatalyst concentration of 6.8 gCDW L?1.
  相似文献   

14.
Introduction – The plant cuticle is a thin, predominantly lipid layer that covers all primary aerial surfaces of vascular plants. The monomeric building blocks of the cutin biopolymer are mainly ω‐hydroxy fatty acids. Objective – Analysis of ω‐hydroxy fatty acids from cutin isolated from tomato fruits at different stages of decomposition in soil. Different derivatives and mass spectrometric techniques were used for peak identification and evaluation. Methodology – Preparation of purified cutin involving dewaxing and HCl treatment. Incubation of purified cutin for 20 months in soil. Pentafluorobenzoyl derivatives were used for GC/MS operated in the electron capture negative ion (ECNI) mode and trimethylsilyl ethers for GC/MS operated in the electron ionisation (EI) mode for analysis of ω‐hydroxy fatty acids. Results – Six ω‐hydroxy fatty acids were detected in the purified cutin, three of which were identified as degradation products of 9,16‐dihydroxyhexadecanoic acid as a consequence of the HCl treatment involved in the purification step. Incubation of the isolated cutin in soil was accompanied with decrease in concentration of all hydroxyl fatty acids. Conclusion – We produced evidence that the HCl treatment only affected free hydroxyl groups and thus could be used for proportioning free and bound OH‐groups on cutin fatty acids. The method enabled a direct quantification of the ω‐hydroxy fatty acids throughout the incubation phase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The reduction of substituted benzaldehydes, benzaldehyde, acetophenone and 2-acetylpyridine to the corresponding alcohols was conducted under mild reaction conditions using plant enzyme systems as biocatalysts. A screening of 28 edible plants, all of which have reductase activity, led to the selection of pinto, Flor de Mayo, ayocote, black and bayo beans because these enabled the quantitative biocatalytic reduction of benzaldehyde to benzyl alcohol. The biocatalyzed reduction of substituted benzaldehydes was dependent on the electronic and steric nature of the substituent. Pinto beans were the most active reductase source, reduced 2-Cl, 4-Cl, 4-Me and 4-OMe-benzaldehyde with a conversion between 70% and 100%. All the beans reduced 2- and 4-fluorobenzaldehyde at a conversion between 83% and 100%. The reduction of the ketones was low, but bayo and black beans yielded (R)-1-(pyridin-2-yl)ethanol in enantiopure form.  相似文献   

16.
植物天然产物是小分子药物、营养品、化妆品、香精香料等的主要来源之一,在国民经济中发挥重要的作用。目前植物天然产物主要依赖于植物提取,这种生产方式占用耕地、生长周期长,而且植物活性成分往往含量低、生产成本高。通过解析植物天然产物生物合成途径,在微生物细胞中重构,创建细胞工厂,实现利用可再生原料发酵合成,为植物天然产物的供给提供了新的路线。本文重点介绍了中国科学院天津工业生物技术研究所在萜类、黄酮类、苯丙素类等重要类型植物天然产物微生物重组合成方面的研究进展,简要探讨了当前研究面临的挑战及未来前景。  相似文献   

17.
Biocatalytic transamination is being established as key tool for the production of chiral amine pharmaceuticals and precursors due to its excellent enantioselectivity as well as green credentials. Recent examples demonstrate the potential for developing economically competitive processes using a combination of modern biotechnological tools for improving the biocatalyst alongside using process engineering and integrated separation techniques for improving productivities. However, many challenges remain in order for the technology to be more widely applicable, such as technologies for obtaining high yields and productivities when the equilibrium of the desired reaction is unfavorable. This review summarizes both the process challenges and the strategies used to overcome them, and endeavors to describe these and explain their applicability based on physiochemical principles. This article also points to the interaction between the solutions and the need for a process development strategy based on fundamental principles.  相似文献   

18.
甲基转移酶(Methyltransferases,MTs)普遍存在于所有生物有机体中,通常以S-腺苷甲硫氨酸作为甲基供体催化底物的甲基化反应,在基因的表达调控和许多天然化合物的合成中起着至关重要的作用。近年来,在微生物中异源表达MTs以实现一些重要天然产物的生物合成取得了巨大的进步,但迄今为止这方面的研究还没有得到详细和全面的总结。文中综述了MTs在微生物合成苯丙烷类化合物、香料类化合物、激素和抗生素等重要天然产物的最新研究进展,重点阐述了应用代谢工程策略高效合成这些甲基化的天然产物,以及利用MTs拓展天然产物分子多样性的研究进展。最后,探讨了MTs应用于微生物合成天然产物所面临的挑战,并对利用MTs进一步高效生产结构和生物活性多样化的天然产物进行了展望。  相似文献   

19.
Kinetic measurements of the benzyl acetate hydrolysis by pig liver esterase in a two-liquid phase stirred tank reactor were made at a variety of aqueous phase enzyme concentrations and stirrer speeds. All experiments were performed in an inverted liquid-liquid system at a high phase ratio. The results were explained in terms of the aqueous phase bulk reaction model developed from previous Lewis cell studies. An algorithm is presented for the indirect measurement of the substrate mass transfer coefficient and consequently a model was developed to predict reaction rates. While the model describes the kinetics effectively, and could therefore be used to predict reactor behaviour, no difference was observed between kinetic measurements made at a stirrer speed of 750 and 1000 rpm.  相似文献   

20.
[背景] N-甲基-L-苯丙氨酸是一种N-烷基化芳香氨基酸,是重要的手性合成单元/中间体/组成成分,在医药、农业、食品等领域有重要应用价值的代谢产物中广泛存在。N-烷基化芳香氨基酸的合成与制备仍具有巨大的挑战。[目的] 在研究加兰他敏的生物合成过程中,我们从产加兰他敏的红花石蒜中克隆并表征苯丙氨酸解氨酶LrPAL3。LrPAL3催化区域及对映选择性的氢胺化反应得到L-苯丙氨酸。通过生物信息学分析,推测LrPAL3可能催化反式-肉桂酸的一步N-甲基胺化反应得到N-甲基-L-苯丙氨酸。[方法] 将反式-肉桂酸与甲胺,以及表达LrPAL3的大肠杆菌全细胞一起孵育。HPLC-DAD及HRESIMS分析表明,上述反应产物为N-甲基-苯丙氨酸。为确定该产物的立体构型,将上述催化反应放大,通过分离纯化得到该酶催化反应产物。[结果] 该化合物的氢谱数据及比旋光数据与N-甲基-L-苯丙氨酸标准品的数据一致。由此说明,LrPAL3能够催化反式-肉桂酸和甲胺发生N-烷基胺化反应,区域和立体专一性地生成N-甲基-L-苯丙氨酸。[结论] 本研究为手性N-烷基氨基酸的不对称合成提供了一种全新的绿色、高效生物催化剂。通过对LrPAL3的蛋白质定向进化及代谢工程,将会进一步扩展LrPAL3的催化反应范围,以多种N-烷基胺类及取代的苯基丙烯酸为底物,实现手性N-烷基-芳基氨基酸的高效区域及立体选择性生物合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号