首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
J Welch  S Fogel  C Buchman    M Karin 《The EMBO journal》1989,8(1):255-260
The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned CUP2 by molecular complementation. The smallest subcloned fragment conferring function was approximately 2.1 kb. We show that CUP2, which is on chromosome VII, codes for or controls the synthesis or activity of a protein which binds the upstream control region of the CUP1 gene on chromosome VIII. Mutant cup2 cells produced extremely low levels of CUP1-specific mRNA, with or without added copper ions and lacked a factor which binds to the CUP1 promoter. Integrated at the cup2 site, the CUP2 plasmid restored the basal level and inducibility of CUP1 expression and led to reappearance of the CUP1-promoter binding factor. Taken collectively, our data establish CUP2 as a regulatory gene for expression of the CUP1 metallothionein gene product.  相似文献   

4.
从酿酒酵母基因组DNA中克隆到金属硫蛋白启动子(PCUP1)片段,将绿色荧光蛋白(GFP)基因置于PCUP1的调控下,构建重组质粒pCUP9K-GFP,并通过氯化锂法转化毕赤酵母,获得工程菌株。工程菌细胞及其发酵液中可检出GFP荧光,表明PCUP1能启动外源基因GFP转录,使工程菌表达并分泌GFP。研究发现,工程菌培养液中分别加入10μmol/L的铜、铬、镉和砷离子后,铜处理组GFP荧光强度明显增加,其余三种离子对工程菌荧光强度影响不大;用铜离子诱导后,工程菌发酵上清液的荧光强度明显增强,并与铜离子浓度(0~1mmol/L)呈正相关。研究表明,该工程菌中启动子PCUP1受铜离子诱导,GFP的表达对铜离子具有剂量依赖性,在一定浓度范围内,GFP荧光强度与铜离子浓度呈正相关。  相似文献   

5.
6.
The yeast metallothionein gene CUP1 was cloned into a bacterial expression system to achieve efficient, controlled expression of the stable, unprocessed protein product. The Escherichia coli-synthesized yeast metallothionein bound copper, cadmium, and zinc, indicating that the protein was functional. Furthermore, E. coli cells expressing CUP1 acquired a new, inducible ability to selectively sequester heavy metal ions from the growth medium.  相似文献   

7.
New yeast episomal vectors having a high degree of utility for cloning and expression in Saccharomyces cerevisiae are described. One vector, pYEULlacZ, is based on pUC19 and employs the pUC19 multiple cloning site for the selection of recombinants in Escherichia coli by lacZ inactivation. In addition, the vector contains two genes, URA3 and leu2-d, for selection of the plasmid in ura3 or leu2 yeast strains. The presence of the leu2-d gene appears to promote replication at high copy numbers. The introduction of CUP1 cassettes allows these plasmids to direct Cu(2+)-regulated production of foreign proteins in yeast. We show the production of a helminth antigen as an example of the vector application.  相似文献   

8.
9.
10.
11.
C. F. Lesser  C. Guthrie 《Genetics》1993,133(4):851-863
We have developed a new reporter gene fusion to monitor mRNA splicing in yeast. An intron-containing fragment from the Saccharomyces cerevisiae ACT1 gene has been fused to CUP1, the yeast metallothionein homolog. CUP1 is a nonessential gene that allows cells to grow in the presence of copper in a dosage-dependent manner. By inserting previously characterized intron mutations into the fusion construct, we have established that the efficiency of splicing correlates with the level of copper resistance of these strains. A highly sensitive assay for 5' splice site usage was designed by engineering an ACT1-CUP1 construct with duplicated 5' splice sites; mutations were introduced into the upstream splice site in order to evaluate the roles of these highly conserved nucleotides in intron recognition. Almost all mutations in the intron portion of the 5' consensus sequence abolish recognition of the mutated site, while mutations in the exon portion of the consensus sequence have variable affects on cleavage at the mutated site. Interestingly, mutations at intron position 4 demonstrate that this nucleotide plays a role in 5' splice site recognition other than by base pairing with U1 snRNA. The use of CUP1 as a reporter gene may be generally applicable for monitoring cellular processes in yeast.  相似文献   

12.
13.
14.
We have previously reported that theSaccharomyces cerevisiae CRS5 metallothionein gene is negatively regulated by oxygen. The mechanism of this repression was the focus of the current study. We observed that the aerobic repression ofCRS5 is rapid and occurs within minutes of exposing anaerobic cultures to air. Furthermore, theCUP1 metallothionein gene ofS. cerevisiae was found to be subject to a similar down-regulation of gene expression. We provide evidence that the aerobic repression of yeast metallothioneins involves copper ions and Ace1, the coppertrans-activator ofCUP1 andCRS5 gene expression. A functional Ace1 binding site was found to be necessary for the aerobic repression ofCRS5. Moreover, the aerobic down-regulation of the metallothioneins was abolished when cells were treated with elevated levels of copper. Our studies show that anaerobic cultures accumulate higher levels of copper than do aerobic cells and that this copper is rapidly lost when cells are exposed to air. In fact, the kinetics of this copper loss closely parallels the kinetics ofCUP1 andCRS5 gene repression. The yeast metallothionein genes, therefore, serve as excellent markers for variations in copper accumulation and homeostasis that occur in response to changes in the oxidative status of the cell.  相似文献   

15.
We have previously reported that theSaccharomyces cerevisiae CRS5 metallothionein gene is negatively regulated by oxygen. The mechanism of this repression was the focus of the current study. We observed that the aerobic repression ofCRS5 is rapid and occurs within minutes of exposing anaerobic cultures to air. Furthermore, theCUP1 metallothionein gene ofS. cerevisiae was found to be subject to a similar down-regulation of gene expression. We provide evidence that the aerobic repression of yeast metallothioneins involves copper ions and Ace1, the coppertrans-activator ofCUP1 andCRS5 gene expression. A functional Ace1 binding site was found to be necessary for the aerobic repression ofCRS5. Moreover, the aerobic down-regulation of the metallothioneins was abolished when cells were treated with elevated levels of copper. Our studies show that anaerobic cultures accumulate higher levels of copper than do aerobic cells and that this copper is rapidly lost when cells are exposed to air. In fact, the kinetics of this copper loss closely parallels the kinetics ofCUP1 andCRS5 gene repression. The yeast metallothionein genes, therefore, serve as excellent markers for variations in copper accumulation and homeostasis that occur in response to changes in the oxidative status of the cell.  相似文献   

16.
17.
Yeast metallothionein function in metal ion detoxification   总被引:10,自引:0,他引:10  
A genetic approach was taken to test the function of yeast metallothionein in metal ion detoxification. A yeast strain was constructed in which the metallothionein locus was deleted (cup1 delta). The cup1 delta strain was complemented with normal or mutant metallothionein genes under normal or constitutive regulatory control on high copy episomal plasmids. Metal resistance of the cup1 delta strain with and without the metallothionein-expressing vectors was analyzed. The normally regulated metallothionein gene conferred resistance only to copper (1000-fold); constitutively expressed metallothionein conferred resistance to both copper (500-fold) and cadmium (1000-fold), but not to mercury, zinc, silver, cobalt, nickel, gold, platinum, lanthanum, uranium, or tin. Two mutant versions of the metallothionein gene were constructed and tested for their ability to confer metal resistance in the cup1 delta background. The first had a deletion of a highly conserved amino acid sequence (Lys-Lys-Ser-Cys-Cys-Ser). The second was a hybrid gene consisting of the sequences coding for the first 20 amino acids of the yeast protein fused to the monkey metallothionein gene. Expression of these genes under the CUP1 promoter provided significant protection from copper, but none of the other metals tested. These results demonstrate that there is significant flexibility in the structural requirements for metallothionein to function in copper detoxification and that yeast metallothionein is also capable of detoxifying cadmium under conditions of constitutive expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号