首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Simultaneously produced superoxide/nitric oxide radicals (O2*-/NO*) could form peroxynitrite (OONO-) which has been found to cause atherogenic, i.e. oxidative modification of LDL. Aromatic hydroxylation and nitration of the aspirin metabolite salicylate by OONO- has been reported. Therefore we tested if salicylate may be able to protect LDL from oxidation by O2*-/NO* by scavenging the OONO reactive decomposition products. When LDL was exposed to simultaneously produced O2*-/NO* using the sydnonimine SIN-1, salicylate exerted an inhibitory effect on LDL oxidation as measured by TBARS and lipid hydroperoxide formation and alteration in electrophoretic mobility of LDL. The cytotoxic effect of SIN-1 pre-oxidised LDL to endothelial cells was also diminished when salicylate was present during SIN-1 treatment of LDL. Spectrophotometric analysis revealed that salicylate was converted to dihydroxybenzoic acid (DHBA) derivatives in the presence of SIN-1. 2,3- and 2,5-DHBA were even more effective to protect LDL from oxidation by O2*-/NO*. Because O2*-/NO* can occur in vivo, the results may indicate that salicylate could act as an efficacious inhibitor of O2*-/NO* initiated atherogenic LDL modification, thus further supporting the rationale of aspirin medication regarding cardiovascular diseases.  相似文献   

2.
NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite.  相似文献   

3.
The survival of skeletal muscle myoblasts in culture after exposure either to a donor of NO, sodium nitroprusside (SNP), or ethanamine, 2,2'-(hydroxynitrosohydrazono)bis-(DETA NONOate), or to a donor of both NO and O(-)(2), 3-morpholinosydnonimine hydrochloride (SIN-1), was investigated. SIN-1 reduced clonogenic survival markedly but donors of NO alone did not. The injurious effect of SIN-1 was prevented by oxyhemoglobin or by uric acid but not by superoxide dismutase. The exposure of myoblasts to authentic peroxynitrite (ONOO(-)) or to DETA NONOate in the presence of an O(-)(2)-generating system did not reduce their survival. The results show that NO or ONOO(-) alone is not detrimental to myoblast survival and suggest that SIN-1 toxicity is, at least in part, mediated by H(2)O(2) in this myoblast culture system.  相似文献   

4.
We investigated the potential involvement of peroxynitrite (ONOO(-)) in the modulation of calcium current (I(Ca)) in guinea pig ventricular myocytes with the whole-cell patch clamp technique and with cyclic AMP (cAMP) measurements. Because of the short half-life of ONOO(-) at physiological pH, we induced an increase in its intracellular levels by using donors of the precursors, nitric oxide (NO) and superoxide anion (O(2) (-)). High concentrations of NO donors, SpermineNONOate (sp/NO, 300 microM) or SNAP (300 microM) increased basal I(Ca) (50.3 +/- 4.6%, n = 7 and 46.2 +/- 5.0%, n = 13). The superoxide anion donor Pyrogallol (100 microM) also stimulated basal I(Ca) (44.6 +/- 2.8%, n = 11). At lower concentration sp/NO (10 nM) and Pyrogallol (1 microM), although separately ineffective on I(Ca), enhanced the current if applied together (33.5 +/- 0.7%, n = 7). The simultaneous donor of O(2) (-) and NO, SIN-1 (500 microM), also stimulated basal I(Ca) (22.8 +/- 2.1%, n = 13). In the presence of saturating cyclic GMP (cGMP, 50 microM) in the patch pipette or of extracellular dibutyryl cGMP (dbcGMP, 100 microM), I(Ca) was still increased by SIN-1 (32.0 +/- 6.1%, n = 4 and 30.0 +/- 5.4%, n = 8). Both Manganese(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP, 100 microM) a ONOO(-) scavenger, and superoxide dismutase (SOD) (150 U/ml) reversed the stimulatory effect of SIN-1 on I(Ca) (respectively -0.6 +/- 4.1%, n = 4 and 3.6 +/- 4.3%, n = 4). Intracellular cAMP level was unaltered by SIN-1, while it was enhanced by blocking the NO-cGMP pathway with the NO synthase inhibitor L-NMMA. These results suggest that peroxynitrite donors increase cardiac calcium current without the involvement of cAMP and cGMP.  相似文献   

5.
6.
3-Morpholinosyndnomine (SIN-1) has been reported to be a peroxynitrite (OONO(-)) donor because it produces both nitric oxide (NO) and superoxide (O(2)(-).) upon decomposition in aqueous solution. However, SIN-1 can decompose to primarily NO in the presence of electron acceptors, including those found in biological tissues, making it necessary to determine the release product(s) formed in any given biological system. In a mixed cortical cell culture system, SIN-1 caused a concentration-dependent increase in cortical cell injury with a parallel increase in the release of cellular proteins containing 3-nitrotyrosine into the culture medium. The increase in 3-nitrotyrosine immunoreactivity, a footprint of OONO(-) production, was specific for SIN-1 as exposure to neurotoxic concentrations of an NO donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl) aminodiazen-1-ium-1,2-diolate (DETA/NO), or NMDA did not result in the nitration of protein tyrosine residues. Both SIN-1-induced injury and 3-nitrotyrosine staining were prevented by the addition of either 5,10,15,20-Tetrakis (4-sulfonatophenyl) prophyrinato iron (III) [FeTPPS], an OONO(-) decomposition catalyst, or uric acid, an OONO(-) scavenger. Removal of NO alone was sufficient to inhibit the formation of OONO(-) from SIN-1 as well as its cytotoxicity. Removal of O(2)(-). and the subsequently formed H(2)O(2) by superoxide dismutase (SOD) plus catalase likewise prevented the nitration of protein-bound tyrosine but actually enhanced the cytotoxicity of SIN-1, indicating that cortical cells can cope with the oxidative but not the nitrosative stress generated. Finally, neural injury induced by SIN-1 in unadulterated cortical cells was prevented by antagonism of AMPA/kainate receptors, while blockade of the NMDA receptor was without effect. In contrast, activation of both NMDA and non-NMDA receptors contributed to the SIN-1-mediated neurotoxicity when cultures were exposed in the presence of SOD plus catalase. Thus, whether SIN-1 initiates neural cell death in an OONO(-)-dependent or -independent manner is determined by the antioxidant status of the cells. Further, the mode of excitotoxicity by which injury progresses is determined by the NO-related species generated.  相似文献   

7.
S-Nitrosothiols act as carrier and reservoir of nitric oxide (NO), and release NO under stimulation of ascorbate (Asc). Erythrocyte can regenerate Asc from its oxidised products, thus saving this powerful antioxidant. In this paper the effect of donors of NO, superoxide, and peroxynitrite (SpNONOate, KO(2), and SIN-1, respectively) on the erythrocyte production of Asc was investigated. We report here that NO stimulated, while superoxide and peroxynitrite decreased, the Asc recycling. The NO-stimulating effect on the erythrocyte production of Asc was confirmed by using GSNO, a natural occurring S-nitrosothiol, as NO donor. These data highlight a new property of NO, that is the stimulation of erythrocytes for their Asc recycling. Such a property might contribute to regenerate Asc from its oxidised forms, thus preventing its depletion in the circulation. Temperature and pH significantly affected, both in absence and presence of NO, the recycling of Asc by erythrocytes. We propose that a positive feedback, involving the reciprocal stimulation between Asc and S-nitrosothiols, might enhance productions of Asc by erythrocytes and NO release by circulating S-nitrosothiols.  相似文献   

8.
Peroxynitrite, formed by the reaction of nitric oxide (NO. ) with superoxide anions (O(2)(-).), may play a role in the pathophysiology of inflammation. The effects of 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, on the human bronchial epithelial cell line BEAS-2B, were examined. SIN-1 exposure resulted in cell death in a time- and dose-dependent manner. Depletion of intracellular glutathione increased the vulnerability of the cells. Pretreatment with Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP) or hydroxocobalamin (HC), O(2)(-). and NO. scavengers, respectively, reduced significantly SIN-1-induced cell death (18.66 +/- 3.57 vs. 77.01 +/- 14.07 or 82.20 +/- 9.64, % cell viability SIN-1 vs. MnTMPyP or HC). Moreover, the mitogen-activated protein kinases (MAPK) p44/42 (ERK), p38, and p54/46 (JNK) were also activated in a time- and concentration-dependent manner. PD-98059 and SB-239063, specific inhibitors of ERK and p38 MAPK pathways, failed to protect cells against 1 mM SIN-1. However, PD-98059 partially inhibited (60% cell survival) SIN-1 effects at < or =0.25 mM, and this was increased with the inclusion of SB-239063. Therefore, MAPKs may mediate signal transduction pathways induced by peroxynitrite in lung epithelial cells leading to cell death.  相似文献   

9.
Vascular endothelial cells, smooth muscle cells, macrophages and other cell types in the arterial wall may develop oxidative/nitrosative damage by generation of reactive oxygen/nitrogen species, which could alter endothelial cell function. These changes could play a key role in acute inflammatory processes, atherosclerosis and neurodegenerative pathogenesis. A human microvascular endothelial cell line (HMEC-1) and human peripheral lymphocytes were employed to investigate the cytotoxic and genotoxic effects induced by reactive peroxyl radicals and peroxynitrite generated from 2,2'-azo-bis-(2-amidinopropane)-dihydrochloride (AAPH) and 3-morpholinosydnonimine (SIN-1), respectively. The peroxides generated by AAPH were cytotoxic but not genotoxic in HMEC-1 cells and in peripheral lymphocytes (in separate culture and in whole blood). SIN-1 showed progressive cytotoxicity to HMEC-1 at doses of 10-75μM. In the same range of concentrations a significant increase in apoptotic cells and micronuclei was observed. DNA flow-cytometric analysis indicated that 100 and 200μM SIN-1 significantly increased the proportion of cells in G(2) phase compared with the control. SIN-1 decomposition products, NO and superoxide anion or peroxynitrite, induced greater cytotoxicity in lymphocyte cultures (separately and in whole blood) supplemented with HEPES - the organic buffer that is widely used to maintain stable physiological pH in cell cultures -, due to H(2)O(2) production, than in cultures without HEPES. In contrast, increased genotoxicity was observed in both lymphocyte cultures in the absence of HEPES due to the reduced cytotoxicity. In the cell systems employed in this study the genotoxic effect appears closely dependent on the nature of radical species generated by SIN-1.  相似文献   

10.
The effect of the chemical structure of nitroxyl spin probes on the rate at which ESR signals are lost in the presence of reactive oxygen species (ROS) was examined. When the spin probes were reacted with either hydroxyl radical (.OH) or superoxide anion radical (O(2)(.-)) in the presence of cysteine or NADH, the probes lost ESR signal depending on both their ring structure and substituents. Pyrrolidine nitroxyl probes were relatively resistant to the signal decay caused by O(2)(.-) with cysteine/NADH. Signal decay rates for these reactions correlated with reported redox potentials of the nitroxyl/oxoammonium couple of spin probes, suggesting that the signal decay mechanism in both cases involves the oxidation of a nitroxyl group. The apparent rate constants of the reactions between the spin probe and .OH and between the spin probe and O(2)(.-) in the presence of cysteine were estimated using mannitol and superoxide dismutase (SOD), respectively, as competitive standards. The rate constants for spin probes and .OH were in the order of 10(9) M(-1) s(-1), much higher than those for the probes and O(2)(.-) in the presence of cysteine (10(3)-10(4) M(-1) s(-1)). These basic data are useful for the measurement of .OH and O(2)(.-) in living animals by in vivo ESR spectroscopy.  相似文献   

11.
Salicylic acid (SA), the known mediator of systemic acquired resistance, induced stomatal closure of Vicia faba L. Application of SA to the epidermal peels evoked an elevation of chemiluminescence of Cripridina lucigenin-derived chemiluminescent reagent (CLA) which is sensitive to superoxide anion (O(2)(.-)). The SA-induced generation of chemiluminescence was suppressed by O(2)(.-)-specific scavengers superoxide dismutase (SOD) and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron). These results suggest that O(2)(.-) was generated in epidermal peels by SA-treatment. A peroxidase inhibitor salicylhydroxamic acid (SHAM) inhibited guaiacol peroxidase activity and suppressed the SA-induced CLA chemiluminescence in the epidermal peels, suggesting that O(2)(.-) generation occurred by the peroxidase-catalyzed reaction as proposed for SA-treated tobacco cell suspension culture [Kawano et al. (1998) Plant Cell Physiol. 39: 721]. SOD, Tiron or SHAM suppressed the SA-induced stomatal closure. Moreover, application of superoxide-generating system also induced stomatal closure. These results support the concept of involvement of reactive oxygen species in signal transduction in SA-induced stomatal closure.  相似文献   

12.
NO is involved in the regulation of immune responses. The role of NO in the pathogenesis of experimental allergic encephalomyelitis (EAE) is controversial. In this study, 3-morpholinosydnonimine (SIN-1), an NO donor, was administered to Lewis rats on days 5-7 postimmunization, i.e., during the incipient phase of EAE. SIN-1 reduced clinical signs of EAE compared with those in PBS-treated control rats and was accompanied by reduced ED1(+) macrophages and CD4(+) T cell infiltration within the CNS. Blood mononuclear cells (MNC) obtained on day 14 postimmunization revealed that SIN-1 administration enhanced NO and IFN-gamma production by blood MNC and suppressed Ag- and mitogen-induced proliferative responses. MHC class II, B7-1 and B7-2 were down-regulated in SIN-1-treated EAE rats. Simultaneously, frequencies of apoptotic cells among blood MNC were increased. In vivo, SIN-1 is likely to behave as an NO donor. Administration of SIN-1 induced NO production, but did not affect superoxide and peroxynitrite formation. Enhanced NO production during the priming phase of EAE thus promotes apoptosis, down-regulates disease-promoting immune reactivities, and ameliorates clinical EAE, mainly through SIN-1-derived NO, without depending on NO synthase.  相似文献   

13.
Peroxynitrite (ONOO(((-)))/ONOOH) is expected in vivo to react predominantly with CO(2), thereby yielding NO(2)(.) and CO(3) radicals. We studied the inhibitory effects of ascorbate on both NADH and dihydrorhodamine 123 (DHR) oxidation by peroxynitrite generated in situ from 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). SIN-1 (150 micrometer)-mediated oxidation of NADH (200 micrometer) was half-maximally inhibited by low ascorbate concentrations (61-75 micrometer), both in the absence and presence of CO(2). Control experiments performed with thiols indicated both the very high antioxidative efficiency of ascorbate and that in the presence of CO(2) in situ-generated peroxynitrite exclusively oxidized NADH via the CO(3) radical. This fact is attributed to the formation of peroxynitrate (O(2)NOO(-)/O(2)NOOH) from reaction of NO(2)(.) with O(2), which is formed from reaction of CO(3) with NADH. SIN-1 (25 micrometer)-derived oxidation of DHR was half-maximally inhibited by surprisingly low ascorbate concentrations (6-7 micrometer), irrespective of the presence of CO(2). Control experiments performed with authentic peroxynitrite revealed that ascorbate was in regard to both thiols and selenocompounds much more effective to protect DHR. The present results demonstrate that ascorbate is highly effective to counteract the oxidizing properties of peroxynitrite in the absence and presence of CO(2) by both terminating CO(3)/HO( small middle dot) reactions and by its repair function. Ascorbate is therefore expected to act intracellulary as a major peroxynitrite antagonist. In addition, a novel, ascorbate-independent protection pathway exists: scavenging of NO(2)(.) by O(2) to yield O(2)NOO(-), which further decomposes into NO(2)(-) and O(2).  相似文献   

14.
Effect of nitric oxide (NO) on the respiratory burst of neutrophils was examined under different oxygen tensions. Phorbol myristate acetate (PMA) stimulated oxygen consumption and superoxide (O2-) generation in neutrophils by a mechanism which was inhibited reversibly by NO. The inhibitory effect of NO increased significantly with a decrease in oxygen tension in the medium. The inhibitory effect of NO was suppressed in medium containing oxyhemoglobin (HbO2), a NO scavenging agent. In contrast, 3-morpholinosydnonimine (SIN-1), a compound that rapidly generates peroxynitrite (ONOO-) from the released NO and O2-, slightly stimulated the PMA-induced respiratory burst. These results suggested that NO, but not ONOO, might reversibly inhibit superoxide generation by neutrophils especially at physiologically low oxygen tensions thereby decreasing oxygen toxicity particularly in and around hypoxic tissues.  相似文献   

15.
Uncoupling of nitric-oxide synthase (NOS) by deficiency of the substrate L-arginine or the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4) is known to generate the reactive oxygen species H2O2 and superoxide. Discrimination between these two compounds is usually achieved by spin trapping of superoxide. We measured superoxide formation by uncoupled rat neuronal NOS, which contained one equivalent of tightly bound BH4 per dimer, using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap. As expected, the Ca2+-stimulated enzyme exhibited reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity that was accompanied by generation of superoxide and H2O2 in the absence of added L-arginine and BH4. Addition of BH4 (10 microM) did not significantly affect the rate of H2O2 formation but almost completely inhibited the apparent formation of superoxide, suggesting direct formation of H2O2. Although L-arginine (0.1 mM) increased the rate of NADPH oxidation about two-fold, the substrate largely attenuated apparent formation of both superoxide and H2O2, indicating that the spin trap did not efficiently outcompete the reaction between NO and superoxide. The efficiency of DEPMPO to scavenge superoxide in the presence of NO was studied by measuring free NO with a Clark-type electrode under conditions of NO/superoxide cogeneration. Neuronal NOS half-saturated with BH4 and the donor compound 3-morpholinosydnonimine (SIN-1) were used as enzymatic and nonenzymatic sources of NO/superoxide, respectively. Neither of the two systems gave rise to considerable NO signals in the presence of 50-100 mM DEPMPO, and even at 400 mM the spin trap uncovered less than 50% of the NO release that was detectable in the presence of 5000 U/ml superoxide dismutase. These results indicate that DEPMPO and all other currently available superoxide spin traps do not efficiently outcompete the reaction with NO. In addition, the similar behavior of nNOS and SIN-1 provides further evidence for NO as initial product of the NOS reaction.  相似文献   

16.
17.
Boccini F  Herold S 《Biochemistry》2004,43(51):16393-16404
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.  相似文献   

18.
Pharmacological delivery of nitric oxide (NO) stimulates the cardiac Na(+)-K(+) pump. However, effects of NO synthesized by NO synthase (NOS) often differ from the effects of NO delivered pharmacologically. In addition, NOS can become "uncoupled" and preferentially synthesize O(2)(.-), which often has opposing effects to NO. We tested the hypothesis that NOS-synthesized NO stimulates Na(+)-K(+) pump activity, and uncoupling of NOS inhibits it. To image NO, we loaded isolated rabbit cardiac myocytes with 4,5-diaminofluorescein-2 diacetate (DAF-2 DA) and measured fluorescence with confocal microscopy. L-arginine (L-arg; 500 micromol/l) increased DAF-2 DA fluorescence by 51% compared with control (n = 8; P < 0.05). We used the whole cell patch-clamp technique to measure electrogenic Na(+)-K(+) pump current (I(p)). Mean I(p) of 0.35 +/- 0.03 pA/pF (n = 44) was increased to 0.48 +/- 0.03 pA/pF (n = 7, P < 0.05) by 10 micromol/l L-Arg in pipette solutions. This increase was abolished by NOS inhibition with radicicol or by NO-activated guanylyl cyclase inhibition with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. We next examined the effect of uncoupling NOS using paraquat. Paraquat (1 mmol/l) induced a 51% increase in the fluorescence intensity of O(2)(.-)-sensitive dye dihydroethidium compared with control (n = 9; P < 0.05). To examine the functional effects of uncoupling, we measured I(p) with 100 micromol/l paraquat included in patch pipette solutions. This decreased I(p) to 0.28 +/- 0.03 pA/pF (n = 12; P < 0.001). The paraquat-induced pump inhibition was abolished by superoxide dismutase (in pipette solutions). We conclude that NOS-mediated NO synthesis stimulates the Na(+)-K(+) pump, whereas uncoupling of NOS causes O(2)(.-)-mediated pump inhibition.  相似文献   

19.
In the present study we investigated the specificity and sensitivity of the chemiluminescence (CL) dye and luminol analogue 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione (L-012) to detect reactive oxygen species (ROS) such as superoxide, peroxynitrite and hydrogen peroxide in cell free systems as well as in isolated mitochondria. The results obtained by L-012 were compared with other CL substances such as luminol, lucigenin, coelenterazine and the fluorescence dye dihydroethidine. The results indicate that the L-012-derived chemiluminescence induced by superoxide from hypoxanthine/xanthine oxidase (HX/XO) or by 3-morpholino sydnonimine (SIN-1)-derived peroxynitrite largely depends on the incubation time. Irrespective of the experimental conditions, L-012-derived CL in response to HX/XO and SIN-1 was 10-100 fold higher than with other CL dyes tested. In a cell-free system, authentic peroxynitrite yielded a higher L-012-enhanced CL signal than authentic superoxide and the superoxide-induced signal in cell-free as well as isolated mitochondria increased in the presence of equimolar concentrations of nitrogen monoxide (NO). The superoxide signal/background ratio detected by L-012-enhanced CL in isolated mitochondria with blocked respiration was 7 fold higher than that obtained by the superoxide sensitive fluorescence dye dihydroethidine. We conclude that L-012-derived CL may provide a sensitive and reliable tool to detect superoxide and peroxynitrite formation in mitochondrial suspensions.  相似文献   

20.
The aim of this work was to assess the capacities of some ·NO-donors to release ·NO, and consequently NOx in aerobic medium, or to give peroxynitrite. The method was based on the differential reactivity of serotonin (5-HT) with either NOx or peroxynitrite, leading in phosphate-buffered solutions to 4-nitroso- and 4-nitro-5-HT formation, respectively. Yields and formation rates of 5-HT derivatives with ·NO-donor were compared to those obtained with authentic ·NO or peroxynitrite in similar conditions. Aside from the capacity of diazenium diolates (SPER/NO and DEA/NO) to release ·NO spontaneously, converting 5-HT exclusively to 4-nitroso-5-HT, all other ·NO donors must undergo redox reactions to produce ·NO. S-nitrosoglutathione (GSNO) and sodium nitroprus-side (SNP) modified 5-HT only in the presence of Cu2+, GSNO yielding 6 times more 4-nitroso-5-HT than SNP. Furthermore, in the presence of Cu+, the yield of ·NO-release from GSNO was 45%. The molsidomine metabolite (SIN-1), which was presumed to release both ·NO and O2/·- at pH 7.4, reacted with 5-HT differently, depending on the presence of reductant or oxidant. Under aerobic conditions, SIN-1 acted predominantly as a 5-HT oxidant and also as a poor ·NO and peroxynitrite donor (15% yield of ·NO-release and 14 % yield of peroxynitrite formation). The strong oxidant Cu2+, even in the presence of air oxygen, accelerated oxidation and increased ·NO release from SIN-1 up to 86%. Only a small part of SIN-1 gave simultaneously ·NO and O2/·- able to link together to give peroxynitrite, but other oxidants could enhance ·NO release from SIN-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号