首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although we have reported that tracheal smooth muscle from sensitized dogs shows altered mechanical properties, we did not know, because of technical difficulties with the preparation, whether similar changes occur in the properties of sensitized central bronchial smooth muscle (BSM), the site at which the acute asthmatic response is believed to develop. We have now succeeded in developing a cartilage-free BSM preparation that retains optimal mechanical properties. Such strips were obtained from mongrel dogs that had been sensitized to ragweed pollen. Controls were littermates injected with adjuvant alone. Length-tension relationships were obtained for both control and sensitized BSM strips (CBSM and SBSM, respectively). The maximal active stresses were the same (P greater than 0.05) when normalized to muscle fraction in total tissue cross-sectional area [6.2 +/- 0.6 x 10(4) and 5.9 +/- 0.6 x 10(4) (SE) for SBSM and CBSM, respectively]. This suggests that optimal tension is an insensitive indicator of bronchial hyperresponsiveness and that isotonic studies might be more revealing. The maximal shortening velocity (Vo) for SBSM at 2 s [0.35 +/- 0.017 (SE) lo/s, where lo signifies optimal muscle length], in the course of a 10-s contraction, was significantly greater (P less than 0.05) than Vo measured for CBSM (0.27 +/- 0.015 lo/s). However, Vo did not differ at the 8-s point of contraction. The sensitized group demonstrated a statistically significantly greater maximal shortening capacity (0.67 +/- 0.04 lo) than the control group (0.51 +/- 0.04 lo). At 2 s of contraction, 80% of maximal SBSM shortening had been completed and was significantly greater than for CBSM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The majority of in vitro studies on airway smooth muscle have used the trachealis (TSM) as a convenient substitute for muscle from airways that constitute the flow-limiting segment. The latter are technically difficult to work with. However, because the site of maximum resistance to airflow is at the third to seventh generations of the bronchial tree, the trachealis preparation is of limited value. Length-tension and force-velocity properties were therefore studied at optimal length (lo) of canine bronchial smooth muscle (BSM) from which cartilage had been carefully removed. Normalized maximum isometric tension or stress (Po x 10(4) N/m2) for BSM was 7.1 +/- 0.19 (SE), which was similar to that of BSM with cartilage (BSM+C, 6.8 +/- 0.21) but lower than for TSM (18.2 +/- 0.81). At length greater than lo, the BSM+C was stiffer than the BSM. The values of maximum shortening capacity (delta Lmax), obtained directly from isotonic shortening at a load equal to the resting tension at lo, were 0.76 lo +/- 0.03, 0.41 lo +/- 0.02, and 0.24 +/- 0.02 lo for TSM, BSM, and BSM+C, respectively. The BSM and BSM+C delta Lmaxs were different (P less than 0.05). Maximal shortening velocities (Vo) for BSM, elicited at 2, 4, and 8 s by quick release in the course of an isometric contraction were significantly higher than for the BSM+C. Vos showed gradual decreases in all three groups in the later phase of contraction, suggesting the operation of latch bridges.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous reports from this laboratory of force-velocity relationships of canine tracheal smooth muscle (TSM) have presented maximum shortening velocities (Vmax) mathematically derived from the linearized transformation of the Hill equation (A. V. Hill, Proc. Roy. Soc. London, Ser. B., 126:136-195, 1938). Recent technical advances enable us to measure Vmax directly using an electromagnetic lever system that can instantaneously clamp to a zero load, thus we compared values of Vmax derived mathematically and those directly measured on the same TSM strips. Derived Vmax values from afterloaded isotonic shortening curves for loads greater than preload were 0.328 +/- 0.021 optimal length (lO)/s and were not significantly different from zero load-clamp measurements of 0.301 +/- 0.022 lO/s from the same (n = 15) muscles. These data indicate that Vmax values mathematically derived for TSM from conventional isotonic afterloaded force-velocity curves are valid estimates of zero load velocity, because they were not significantly different from values obtained by direct measurement using the zero load-clamp technique.  相似文献   

4.
Mechanical properties of spontaneously contracting isolated nonpregnant human myometrium (NPHM) were investigated throughout the whole continuum of load from zero load up to isometry. This made it possible to assess the three-dimensional tension-velocity-length (T-V-L) relationship characterizing the level of contractility and to determine crossbridge (CB) kinetics of myosin molecular motors. Seventy-seven muscle strips were obtained from hysterectomy in 42 nonpregnant patients. Contraction and relaxation parameters were measured during spontaneous mechanical activity. The isotonic tension-peak velocity (T-V) relationship was hyperbolic in 30 cases and nonhyperbolic in 47 cases. When the T-V relationship was hyperbolic, the Huxley formalism could be used to calculate CB kinetics and CB unitary force. At the whole muscle level and for a given isotonic load level, part of the V-L phase plane showed a common pathway, so that a given instantaneous length corresponded to only one possible instantaneous velocity, independent of time and initial length. At the molecular level, rate constants for CB attachment and detachment were dramatically low, ~100 times lower than those of striated muscles, and ~5 to 10 times lower than those of other smooth muscles. The CB unitary force was ~1.4 ± 0.1 pN. NPHM shared similar basic contractile properties with striated muscles, reflected in the three-dimensional T-V-L relationship characterizing the contractile level. Low CB attachment and detachment rate constants made it possible to generate normal CB unitary force and normal muscle tension in NPHM, even though it contracted extremely slowly compared with other muscles.  相似文献   

5.
Alterations of smooth muscle function can just as easily stem from mechanical alterations in its ability to relax as from alteration in contraction. Since a failure of arterial smooth muscle to relax may contribute to the development of hypertension, we felt it necessary to study the relaxation process in greater depth. The effect of load on the time course of relaxation of rat caudal artery smooth muscle was analyzed either by comparing afterloaded contractions against various loads or by imposing abrupt alterations in load. Unlike mammalian striated muscles in which relaxation was reported sensitive to loading conditions, relaxation in the smooth muscle of the rat caudal artery (n = 17) was found to be largely independent of loading conditions. This type of relaxation has been termed "inactivation-dependent" relaxation; it is typical of muscle tissue in which the calcium sequestering apparatus is poorly developed. Our results suggest that calcium resequestration, or some biochemical process downstream to it, is the rate-limiting step during relaxation in arterial smooth muscle and that this is not qualitatively different for hypertensive arterial smooth muscle. These analytic techniques were used in the study of relaxation of hypertensive vessels. Quantitative analysis of the relaxation curves showed that both isometric and isotonic relaxation time was prolonged in hypertensive arterial smooth muscle. Prolonged isotonic relaxation indicates that hypertensive arteries remain narrowed for prolonged periods compared with normotensive vessels. Such narrowed vessels may be a factor in the increased total peripheral resistance seen in genetic hypertension.  相似文献   

6.
The dynamic properties of mammalian skeletal muscle   总被引:2,自引:1,他引:1       下载免费PDF全文
The dynamic characteristics of the rat gracilis anticus muscle at 17.5°C have been determined by isotonic and isometric loading. For a fixed initial length these characteristics were represented either as a family of length-velocity phase trajectories at various isotonic afterloads or as a series of force-velocity curves at different lengths. An alternate method of viewing these data, the length-external load-velocity phase space, was also generated. When the muscle was allowed to shorten from different initial lengths, the velocity of shortening achieved at a given length was lower for longer initial lengths. The amount of departure was also dependent upon the isotonic load, the greater the load the greater the departure. The departures were not caused by changes in the elastic elements of the muscle or fatigue in the ordinary sense. When the behavior of the muscle was investigated at different frequencies of stimulation, the shortening velocity was a function of the number of stimulating pulses received by the muscle at a given frequency. The shortening velocity of the rat gracilis anticus muscle is, therefore, not only a function of load and length, but also of an additional variable related to the time elapsed from onset of stimulation.  相似文献   

7.
The present study examined the effect of theophylline on the shortening velocity of submaximally activated diaphragmatic muscle (i.e., muscles were activated by the use of a level of stimulation, 50 Hz, within the range of phrenic neural firing frequencies achieved during breathing, whereas maximum activation is achieved at 300 Hz). Experiments were performed in vitro on strips of diaphragmatic muscle obtained from 21 Syrian hamsters. Muscle shortening velocity was assessed during isotonic contractions against a range of afterloads, and Hill's characteristic equation was used to calculate velocity at zero load. In addition, unloaded shortening velocity was also measured by the slack test, i.e., from the time required for muscles to take up slack after a sudden reduction in muscle length. Theophylline (160 mg/l) increased the velocity of muscle shortening against a wide range of external loads (0-14 N/cm2) and increased the extrapolated unloaded velocity of shortening from 6.4 +/- 0.9 to 7.9 +/- 1.1 (SE) lengths/s (P less than 0.01). Theophylline reduced the time required to take up slack for any given step change in muscle length, increasing the unloaded velocity of shortening assessed by the slack test from 7.6 +/- 0.9 to 9.3 +/- 1.1 lengths/s (P less than 0.002). The effect of theophylline on diaphragmatic shortening velocity was evident at concentrations as low as 40 mg/l and increased progressively as theophylline concentrations were increased to 320 mg/l. Theophylline increased the shortening velocity of fatigued as well as fresh muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The force-velocity (F-V) relationships of canine gastrocnemius-plantaris muscles at optimal muscle length in situ were studied before and after 10 min of repetitive isometric or isotonic tetanic contractions induced by electrical stimulation of the sciatic nerve (200-ms trains, 50 impulses/s, 1 contraction/s). F-V relationships and maximal velocity of shortening (Vmax) were determined by curve fitting with the Hill equation. Mean Vmax before fatigue was 3.8 +/- 0.2 (SE) average fiber lengths/s; mean maximal isometric tension (Po) was 508 +/- 15 g/g. With a significant decrease of force development during isometric contractions (-27 +/- 4%, P < 0.01, n = 5), Vmax was unchanged. However, with repetitive isotonic contractions at a low load (P/Po = 0.25, n = 5), a significant decrease in Vmax was observed (-21 +/- 2%, P < 0.01), whereas Po was unchanged. Isotonic contractions at an intermediate load (P/Po = 0.5, n = 4) resulted in significant decreases in both Vmax (-26 +/- 6%, P < 0.05) and Po (-12 +/- 2%, P < 0.01). These results show that repeated contractions of canine skeletal muscle produce specific changes in the F-V relationship that are dependent on the type of contractions being performed and indicate that decreases in other contractile properties, such as velocity development and shortening, can occur independently of changes in isometric tension.  相似文献   

9.
In using pharmacologic stimuli, force-velocity (FV) curves are usually obtained by the method of quick release (QR) and redevelopment of shortening at peak tetanic tension; the advantage of the method being that the active state is at maximum. However, the QR may itself reduce the intensity of the active state and result in reduced values of FV constants. We tested this by delineating FV curves in canine tracheal smooth muscle using both conventional afterloaded isotonic contractions (ALI), and redevelopment of shortening after QR methods. For both these studies a supramaximal tetanizing electrical stimulus was used. The analysis of 11 experiments revealed that the latter method resulted in statistically significant reductions of all FV constants except for Po (maximum isometric tetanic tension). The means and standard errors for the sets of constants for the ALI and QR, respectively, are as follows: Vmax (maximum velocity of shortening) = 0.275 lo (optimal muscle length)/s +/- 0.024 (SE), and 0.216 lo/s + 0.023; a (hyperbolic constant with units of force) = 294 g/cm2 +/- 35 and 236 g/cm2 +/- 32; b (hyperbolic constant with units of velocity) = 0.059 lo +/- 0.004 and 0.039 lo/s +/- 0.005; a/Po = 0.214 +/- 0.028 and 0.182 +/- 0.026; and Po = 1.362 kg/cm2 +/- 0.106 and 1.294 kg/cm2 +/- 0.097. These data clearly show that the quick-release method for measuring force-velocity relationships in canine smooth muscle results in significant underestimates of muscle shortening properties.  相似文献   

10.
Maximal trachealis muscle shortening in vivo was compared with that in vitro in seven anesthetized dogs. In addition, the effect of graded elastic loads on the muscle was evaluated in vitro. In vivo trachealis muscle shortening, as measured using sonomicrometry, revealed maximal active shortening to be 28.8 +/- 11.7% (SD) of initial length. Trachealis muscle preparations from the same animals were studied in vitro to evaluate isometric force generation, isotonic shortening, and the effect of applying linear elastic loads to the trachealis muscle during contraction from optimal length. Maximal isotonic shortening was 66.8 +/- 8.4% of optimal length in vitro. Increasing elastic loads decreased active shortening and velocity of shortening in vitro in a hyperbolic manner. The elastic load required to decrease in vitro shortening to the extent of the shortening observed in vivo was similar to the estimated load provided by the tracheal cartilage. We conclude that decreased active shortening in vivo is primarily due to the elastic afterload provided by cartilage.  相似文献   

11.
In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.  相似文献   

12.
The comparative effects of contractile agonists and physiological stimulation of the tracheal and bronchial smooth muscle (BSM) response were studied isometrically in situ in five Basenji-greyhound (BG) and six mongrel dogs. Frequency-response curves generated by bilateral stimulation of the vagus nerves (0-20 Hz, 15-20 V, 2-ms duration) elicited greater maximal contraction in mongrel trachea (36.8 +/- 8.1 vs. 26.9 +/- 4.0 g/cm; P less than 0.02) and exhibited greater responsiveness in mongrel BSM (half-maximal response to electrical stimulation 3.0 +/- 1.1 vs. 7.0 +/- 0.5 Hz; P less than 0.05) compared with BG dogs. However, muscarinic sensitivity to intravenous methacholine (MCh) was substantially greater in BG dogs; MCh caused contraction greater than 1.5 g/cm at a mean dose of 3.0 X 10(-10) mol/kg for BG dogs compared with 5.1 X 10(-9) mol/kg for mongrel controls (P less than 0.03, Mann-Whitney rank-sum test). In contrast to the muscarinic response, the contractile response elicited by intravenous norepinephrine after beta-adrenergic blockade was similar in trachea and bronchus for both mongrel and BG dogs. Our data confirm previous in vitro demonstration of tracheal hyporesponsiveness in BG dogs and demonstrate that the contraction resulting from efferent parasympathetic stimulation is less in the BG than mongrel dogs. However, postsynaptic muscarinic responsiveness of BG BSM is substantially increased. We conclude that a component of airway responsiveness in BG dogs depends directly on contractile forces generated postsynaptically that are nongeometry dependent, postjunctional, and agonist specific.  相似文献   

13.
In this review the biophysics and biochemistry of smooth muscle contraction are dealt with. We describe a new model for the study of bronchial smooth muscle, which facilitates study of cellular contractile mechanisms. A new concept emerging is that study of steady-state mechanical parameters such as maximal isometric force (Po) velocity is inadequate because two types of crossbridges (normally cycling (NBR) and latch) seem to be sequentially active during smooth muscle contraction. Thus quick-release techniques are required to characterize the force-velocity properties of the two types of bridges. Pathophysiological processes that affect the muscle's shortening ability seem to affect the early NBRs only. With respect to maximal shortening capacity of the smooth muscle, the role of loading is very important. The differences between isotonic, elastic, and viscous loading are considerable. Ultimately, the time course and magnitude of loading should exactly resemble that operative in vivo. Once again, it is the characteristic of loading in the early phase of contraction that is crucial, as most of the shortening in smooth muscle occurs early in the contraction. While the maximum force developed by smooth muscle per unit cross-sectional area is the same as for striated muscle, the velocity is 50 times less. The properties of the series and parallel elastic elements of smooth muscle are described. The latter, when in compression mode, acts as an internal resistance to shortening and probably limits it. Isotonic relaxation has therefore not been studied in smooth muscle. We have developed a shortening parameter that is independent of the load on the muscle and of the initial length of the muscle's contractile element. We report the novel observation that isotonically relaxing smooth muscle reactivates itself, resulting in terminal slowing of the relaxation process. With respect to the biochemistry of smooth muscle contraction, contractile (actin isoforms, myosin heavy and light chains and their isoforms), regulatory (calmodulin-4 Ca2+, myosin light chain kinase, myosin light chain and its phosphorylation, tropomyosin, caldesmon, and calponin), and cytoskeletal (chiefly desmin and vimentin) proteins are discussed. While the kinase activates the contractile system, caldesmon and calponin modulate the activity downward. The cytoskeletal proteins desmin, vimentin, and alpha-actinin could constitute the muscle cell's internal resistor.  相似文献   

14.
Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P < 0.001) and after the simulated deep breaths (P = 0.002); 2) ASM strips with a higher isotonic velocity exhibited a greater total shortening during the force oscillation protocol (P < 0.005); and 3) the effect of an increase in isotonic velocity was at least comparable in magnitude to the effect of a proportional increase in ASM force-generating capacity. A cross-bridge model showed that an increase in the total amount of shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.  相似文献   

15.
Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.  相似文献   

16.
We investigated the mechanisms underlying muscarinic excitation-contraction coupling in canine airway smooth muscle using organ bath, fura 2 fluorimetric, and patch-clamp techniques. Cyclopiazonic acid (CPA) augmented the responses to submaximal muscarinic stimulation in both tracheal (TSM) and bronchial smooth muscles (BSM), consistent with disruption of the barrier function of the sarcoplasmic reticulum. During maximal stimulation, however, CPA evoked substantial relaxation in TSM but not BSM. CPA reversal of carbachol tone persisted in the presence of tetraethylammoium or high KCl, suggesting that hyperpolarization is not involved; CPA relaxations were absent in tissues preconstricted with KCl alone or by permeabilization with beta-escin, ruling out a nonspecific effect on the contractile apparatus. Peak contractions were sensitive to inhibitors of tyrosine kinase (genistein) or Rho kinase (Y-27632). Sustained responses were dependent on Ca(2+) influx in TSM but not BSM; this influx was sensitive to Ni(2+) but not La(3+). In conclusion, there are several mechanisms underlying excitation-contraction coupling in airway smooth muscle, the relative importance of which varies depending on tissue and degree of stimulation.  相似文献   

17.
Both isometric and isotonic relaxation rates have previously been reported to be decreased in caudal arterial and mesenteric resistance arterial smooth muscle from 16- to 21-week-old spontaneously hypertensive rats (SHR) compared with muscle from age-matched normotensive Wistar-Kyoto rats (WKY). An increased maximum velocity of shortening (Vmax) and an increased shortening ability (delta Lmax) have also been reported for arterial smooth muscle from 16- to 21-week-old SHR. It has been suggested that both increased narrowing and prolonged narrowing of arteries contribute to the development of hypertension. However, SHR Vmax is not different from WKY Vmax when studying arterial muscle from older (28- to 31-week-old) rats. Thus increased arterial narrowing ability cannot be a contributing factor to the maintenance of hypertension. In this study the role of relaxation rate in the maintenance of hypertension was examined by comparing the relaxation rates of isometric and isotonic contractions of caudal arterial strips from 16- to 21-week-old SHR (n = 9) and WKY (n = 8) and from 28- to 31-week-old SHR (n = 7) and WKY (n = 5). While relaxation rates were lower for 16- to 21-week-old SHR compared with age-matched WKY preparations for both isometric and isotonic contractions, only isometric relaxation rates were found to be different in 28- to 31-week-old SHR compared with 28- to 31-week-old caudal arterial muscle (p less than 0.05). Vmax tended to normalize from a once-elevated velocity, while isometric relaxation rate remained decreased in SHR with ageing and (or) with progression of the hypertensive condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. Within the range of the given conditions of measuring static and dynamic properties of the rabbit gastrocnemius muscle the following results were obtained: a) the dependence of the maxima of isotonic shortening upon the relative length of the muscle at constant load is linear; b) the parameters of the non-linear dependence of the passive elastic force of the muscle upon its relative length (measured in series) were identified using asymptotic regression; c) the time course of isotonic contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be satisfactorily approximated by responses of a linear system to a step-function; d) the time course of isometric contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be closely approximated by responses of a linear system to a step-function. 2. The time constants of isotonic and isometric contractions were determined as the parameters of the corresponding linear systems. 3. The maximum rates of the isometric and isotonic contractions were determined as maxima of the first derivatives of the responses of the corresponding models. 4. The experimental set-up made it possible to compare the values of the parameters concomitantly followed at various muscle lengths and at various loads.  相似文献   

19.
Changes in load during most phases of an isotonic contraction of the frog and turtle heart increased or decreased the duration of the twitch. It was abbreviated by a maintained increase or by a brief decrease in load. The relaxing effect of these procedures developed with a delay lasting more than a second under some conditions and will be called lengthening deactivation. The reverse procedures, a maintained diminution or a brief increase in load, increased the duration of the twitch. This effect will be called shortening activation. Although the termination of relaxation may be delayed or advanced by the mechanical interventions mentioned, the normal time- course of isotonic relaxation was always resumed later, regardless of the starting level of the load, making it possible to measure accurately changes in the duration of the twitch. The responses to changes in load produce positive feedback during the isotonic contraction and explain, at least in part, the difference in the time- course of isotonic and isometric contraction. The effects of changes in load were much smaller and briefer in the atrium than the ventricle.  相似文献   

20.
Juveniles of many species, including humans, display greater airway responsiveness than do adults. This may involve changes in airway smooth muscle function. In the present work we studied force production and shortening velocity in trachealis from 1-wk-old (1 wk), 3-wk-old (3 wk), and 3-mo-old (adult) guinea pigs. Strips were electrically stimulated (60 Hz, 18 V) at their optimal length (l(o)) to obtain maximum active stress (P(o)) and rate of stress generation. Then, force-velocity curves were elicited at 2.5 s from the onset of the stimulus. By applying a recently developed modification of Hill's equation for airway smooth muscle, the maximum shortening velocity at zero load (V(o)) and the value alpha. gamma/beta, an index of internal resistance to shortening (Rsi), were calculated (alpha, beta, and gamma are the constants of the equation). P(o) increased little with maturation, whereas the rate of stress generation increased significantly (0.40 +/- 0.03, 0.45 +/- 0.03, 0. 51 +/- 0.03 P(o)/s for 1 wk, 3 wk, and adult animals). V(o) slightly increased early with maturation to decrease significantly later (1. 79 +/- 0.67, 2.45 +/- 0.92, and 0.55 +/- 0.09 l(o)/s for 1 wk, 3 wk, and adult animals), whereas the Rsi showed an opposite trend (14.98 +/- 5.19, 8.99 +/- 3.01, and 32.07 +/- 5.54 mN. mm(-2). l(o)(-1). s for 1 wk, 3 wk, and adult animals). This early increase of force generation in combination with late increase of Rsi may explain the changes of V(o) with age. An elevated V(o) may contribute to the incidence of airway hyperresponsiveness in healthy juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号