首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serban D  Benevides JM  Thomas GJ 《Biochemistry》2003,42(24):7390-7399
The sequence isomers d(CGCAAATTTGCG) and d(TCAAGGCCTTGA) form self-complementary duplexes that present distinct targets for binding of the homodimeric architectural protein HU of Bacillus stearothermophilus (HUBst). Raman spectroscopy shows that although each duplex structure is of the B-DNA type, there are subtle conformational dissimilarities between them, involving torsion angles of the phosphodiester backbone and the arrangements of stacked bases. Each DNA duplex forms a stable stoichiometric (1:1) complex with HUBst, in which the structure of the HUBst dimer is largely conserved. However, the Raman signature of each DNA duplex is perturbed significantly and similarly with HUBst binding, as reflected in marker bands assigned to localized vibrations of the phosphodiester moieties and base residues. The spectral perturbations identify a reorganization of the DNA backbone and partial unstacking of bases with HUBst binding, which is consistent with non-sequence-specific minor-groove recognition. Prominent among the HUBst-induced perturbations of B-DNA are a conversion of approximately one-third of the alpha/beta/gamma torsions from the canonical g(-)/t/g(+) conformation to an alternative conformation, an equivalent conversion of deoxyadenosyl moieties from the C2'-endo/anti to the C3'-endo/anti conformation, and appreciable unstacking of purines. The results imply that each solution complex is characterized by structural perturbations extending throughout the 12-bp sequence. Comparison with previously studied protein/DNA complexes suggests that binding of HUBst bends DNA by approximately 70 degrees.  相似文献   

2.
Cobalt hexammine [Co(NH3)6(3+)] is an efficient DNA complexing agent which significantly perturbs nucleic acid secondary structure. We have employed red excitation (647.1 nm) from a krypton laser to obtain Raman spectra of the highly colored complexes formed between cobalt hexammine and crystals of the DNA oligomers, d(5BrCGAT5BrCG) and d(CGCGATCGCG), both of which incorporate out-of-alternation pyrimidine/purine sequences. The Co(NH3)6(3+) complex of d(5BrCGAT5BrCG) exhibits a typical Z-form Raman signature, similar to that reported previously for the alternating d(CGCGCG) sequence. Comparison of the Raman bands of d(5BrCGAT5BrCG) with those of other oligonucleotide and polynucleotide structures suggests that C3'-endo/syn and C3'-endo/anti thymidines may exhibit distinctive nucleoside conformation markers, and tentative assignments are proposed. The Raman markers for C2'-endo/anti adenosine in this Z-DNA are consistent with those reported previously for B-DNA crystals containing C2'-endo/anti dA. Raman bands of the cobalt hexammine complex of d(CGCGATCGCG) are those of B-DNA, but with significant differences from the previously characterized B-DNA dodecamer, d(CGCAAATTTGCG). The observed differences suggest an unusual deoxyguanosine conformer, possibly related to a previously characterized structural intermediate in the B-->Z transition. The present results show that crystallization of d(CGCGATCGCG) in the presence of cobalt hexammine is not alone sufficient to induce the left-handed Z-DNA conformation. This investigation represents the first application of off-resonance Raman spectroscopy for characterization of highly chromophoric DNA and illustrates the feasibility of the Raman method for investigating other structurally perturbed states of DNA-cobalt hexammine complexes.  相似文献   

3.
The conformation of the self-complimentary DNA dodecamer d(br5CGbr5CGAATTbr5CGbr5CG) has been investigated in a variety of salt and solvent conditions by one and two-dimensional 1H NMR. In low salt aqueous solutions, the molecule forms a regular B-DNA structure similar to the unmodified dodecamer. However, in aqueous solution containing high salt concentration and methanol, the dodecamer adopts a structure in which the br5CGbr5CG ends of the molecule are in a Z-DNA like conformation and the AATT region is neither standard B-DNA nor Z-DNA. The implications of these results for the structure of junctions between B and Z-DNA and the sequence specificity of Z-DNA are discussed.  相似文献   

4.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the crystal structures of protein complexes with B-DNA, α and γ DNA backbone torsion angles often exhibit non-canonical values. It is not known if these alternative backbone conformations are easily accessible in solution and can contribute to the specific recognition of DNA by proteins. We have analysed the coupled transition of the α and γ torsion angles within the central GpC step of a B-DNA dodecamer by computer simulations. Five stable or metastable non-canonical α/γ sub-states are found. The most favourable pathway from the canonical α/γ structure to any unusual form involves a counter-rotation of α and γ, via the trans conformation. However, the corresponding free energy indicates that spontaneous flipping of the torsions is improbable in free B-DNA. This is supported by an analysis of the available high resolution crystallographic structures showing that unusual α/γ states are only encountered in B-DNA complexed to proteins. An analysis of the structural consequences of α/γ transitions shows that the non-canonical backbone geometry influences essentially the roll and twist values and reduces the equilibrium dispersion of structural parameters. Our results support the hypothesis that unusual α/γ backbones arise during protein–DNA complexation, assisting the fine structural adjustments between the two partners and playing a role in the overall complexation free energy.  相似文献   

6.
The laser Raman spectra of filamentous viruses contain discrete bands which are assignable to molecular vibrations of the encapsidated, single-stranded DNA genomes and which are informative of their molecular conformations. Discrimination between Raman bands of the DNA and those of the coat proteins is facilitated by analysis of viruses containing deuterium-labeled amino acids. Specific DNA vibrational assignments are based upon previous studies of A-, B-, and Z-DNA oligonucleotide crystals of known structure [Thomas, G.J., Jr., & Wang, A.H.-J. (1988) in Nucleic Acids and Molecular Biology (Eckstein, F., & Lilley, D.M.J., Eds.) Vol. 2, Springer-Verlag, Berlin]. The present results show that canonical DNA structures are absent from six filamentous viruses: fd, If1, IKe, Pfl, Xf, and Pf3. The DNAs in three viruses of symmetry class I (fd, If1, IKe) contain very similar nucleoside sugar puckers and glycosyl torsions, deduced to be C3'-endo/anti. However, nucleoside conformations are not the same among the three class II viruses examined: Pf1 and Xf DNAs contain similar conformers, deduced to be C2'-endo/anti, whereas Pf3 DNA exhibits bands usually associated with C3'-endo/anti conformers. Conformation-sensitive Raman bands of the DNA 3'-C-O-P-O-C-5' groups show that in all class I viruses and in Pf1 the ssDNA backbones do not contain regularly ordered phosphodiester group geometries, like those found in ordered single- and double-stranded nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation.  相似文献   

8.
DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution.  相似文献   

9.
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) has been solved and refined at 2.5 A resolution. The refinement procedure converged at R = 0.181 for all reflections in the range 20.0-2.5 A. In the crystal, the RNA/DNA hybrid duplex has an A' conformation with all but one of the nucleotide sugar moieties adopting a C3'- endo (N) conformation. Both strands in the double helix adopt a global conformation close to the A-form and the width of the minor groove is typical of that found in the crystal structures of other A-form duplexes. However, differences are observed between the RNA and DNA strands that make up the hybrid at the local level. In the central portion of the duplex, the RNA strand has backbone alpha, beta and gamma torsion angles that alternate between the normal gauche -/ trans / gauche + conformation and an unusual trans / trans / trans conformation. Coupled with this so-called 'alpha/gamma flipping' of the backbone torsion angles, the distance between adjacent phosphorous atoms on the RNA strand systematically varies. Neither of these phenomena are observed on the DNA strand. The structure of the RNA/DNA hybrid presented here differs significantly from that found in solution for this and other sequences. Possible reasons for these differences and their implications for the current model of RNase H activity are discussed.  相似文献   

10.
A high-resolution NMR study of the solution structure of the calcium release agent cADPR has been performed. Pseudorotationals analysis reveals that in solution both sugar rings in cADPR adopt predominantly (approximately 75%) South conformations, with the A and N rings adopting approximately 2T3 (C2'-endo(major)-C3'-exo(minor) and 4(3)T (C3'-exo-C4'-endo) conformations, respectively. The backbone torsion angles beta and gamma have also been determined. While the minor North conformers were not observed in the crystal structure of cADPR, the solution values of the major South conformers compare well to those found in crystal structure.  相似文献   

11.
We present an algorithm for the computation of 2'-deoxyribose-phosphodiester backbone conformations that are stereochemically compatible with a given arrangement of nucleic acid bases in a DNA structure. The algorithm involves the sequential computation of 2'-deoxyribose and phosphodiester conformers (collectively referred to as a backbone 'segment'), beginning at the 5'-end of a DNA strand. Computation of the possible segment conformations is achieved by the initial creation of a fragment library, with each fragment representing a set of bond lengths, bond angles and torsion angles. Following exhaustive searching of sugar conformations, each segment conformation is reduced to a single vector, defined by a specific distance, angle and torsion angle, that allows calculation of the O(1)' position. A given 'allowed' conformation of a backbone segment is determined based on its compatibility with the base positions and with the position of the preceding backbone segment. Initial computation of allowable segment conformations of a strand is followed by the determination of continuous backbone solutions for the strand, beginning at the 3'-end. The algorithm is also able to detect repeating segment conformations that arise in structures containing geometrically repeating dinucleotide steps. To illustrate the utility and properties of the algorithm, we have applied it to a series of experimental DNA structures. Regardless of the conformational complexity of these structures, we are able to compute backbone conformations for each structure. Hence, the algorithm, which is currently implemented within a new computer program NASDAC (Nucleic Acids: Structure, Dynamics and Conformation), should have generally applicability to the computation of DNA structures.  相似文献   

12.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

13.
Abstract

Analysis of 1H-NOESY solution data for eight short DNA duplexes has revealed pronounced differences between the sugar conformations of purine and pyrimidine nucleotides. It was found that the H1′-H4′ interproton distance is less than ca. 3.0 A. in pyrimidine sugars, while in purine sugars it is more than ca. 3.OA. This difference has been analyzed by comparison with the sugar conformations of highly resolved B-DNA crystal structures and model sugar conformations. The conclusion can be drawn that the deoxyribose conformation is of the general C2′-endo type but pyrimidine sugars are characterized by smaller phase angles of pseudorotation P (90°<P<150°), while purine sugars have larger P values that are greater than ca. 140° (140°<P<180°). There is no such clear base dependence of sugar conformation in highly resolved B-DNA crystal structures; however the similar trend can be seen as in the solution studies. Based on B-type DNA crystal structures, I-coupling constants have been calculated, and the applicability of experimental coupling measurements to the determination of sugar conformation is discussed.  相似文献   

14.
Raman spectra of poly(dG-dC) . poly(dG-dC) in D2O solutions of high (4.0M NaCl) and low-salt (0.1M NaCl) exhibit differences due to different nucleotide conformations and secondary structures of Z and B-DNA. Characteristic carbonyl modes in the 1600-1700 cm-1 region also reflect differences in base pair hydrogen bonding of the respective GC complexes. Comparison with A-DNA confirms the uniqueness of C = O stretching frequencies in each of the three DNA secondary structures. Most useful for qualitative identification of B, Z and A-DNA structures are the intense Raman lines of the phosphodiester backbone in the 750-850 cm-1 region. A conformation-sensitive guanine mode, which yields Raman lines near 682, 668, or 625 cm-1 in B (C2'-endo, anti), A (C3'-endo, anti) or Z (C3'-endo, syn) structures, respectively, is the most useful for quantitative analysis. In D2O, the guanine line of Z-DNA is shifted to 615 cm-1, permitting its detection even in the presence of proteins.  相似文献   

15.
The effect of crystal packing on oligonucleotide double helix structure   总被引:11,自引:0,他引:11  
One of the questions that constantly is asked regarding x-ray crystal structure analyses of macromolecules is: To what extent is the observed crystal structure representative of the molecular conformation when free in solution, and to what degree is the structure perturbed by intermolecular crystal forces? This can be assessed with DNA oligomers because of an unusual aspect of crystallization self-complementary oligomers should possess a twofold symmetry axis normal to their helix axis, yet more often than not crystal of such oligomers do not use this internal symmetry. The two ends of the helix are crystallographically distinct though chemically identical. Complexes of DNA oligomers with intercalating drugs such as triostin A tend to use their twofold symmetry when they crystallize, whereas complexes with non-intercalating, groove-binding drugs ignore this symmetry unless the drug molecule is very small. A detailed examination of crystal packing in the dodecamer C-G-C-G-A-A-T-T-C-G-C-G provides an explanation of all of the foregoing behavior in terms of the mechanism of nucleation of DNA or DNA-drug complexes on the surface of a growing crystal. Asymmetry of the ends of the DNA helix is the price that is paid for efficient lateral packing of helices within the crystal. The actual end-for-end variation in standard helix parameters is compared with the experimental noise level as gauged by independent re-refinement of the same oligonucleotide structure where available, and with the observed extent of variation of these same parameters along the helix. Oligomers analyzed are the B-DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G, the A-DNA octamer G-G-T-A-T-A-C-C, and the phosphorothioate analogue of the B-DNA hexamer G-C-G-C-G-C. End-for-end variation, presumably the result of crystal packing is typically double the experimental noise level, and half the variation in the same parameter along the helix. Analysis of crystal packing in the phosphorothioate hexamer, which uses the same P212121 space group as the dodecamer, shows that the highly unsymmetrical B1 vs. BII backbone conformation probably is to be ascribed to crystal packing forces, and not to the sequence of the hexamer.  相似文献   

16.
One-dimensional nuclear Overhauser effect (NOE) in nuclear magnetic resonance spectroscopy along with stereochemically sound model building was employed to derive the structure of the hybrid poly(rA).poly(dT) in solution. Extremely strong NOE was observed at AH2' when AH8 was presaturated; strong NOEs were observed at TH2'TH2' when TH6 was presaturated; in addition the observed NOEs at TH2' and TH2' were nearly equal when TH6 was presaturated. There was no NOE transfer to AH3' from AH8 ruling out the possibility of (C-3'-endo, low anti chi approximately equal to 200 degrees to 220 degrees) conformation for the A residues. The observed NOE data suggest that the nucleotidyl units in both rA and dT strands have equivalent conformations: C-2'-endo/C-1'-exo, anti chi approximately equal to 240 degrees to 260 degrees. Such a nucleotide geometry for rA/dT is consistent with a right-handed B-DNA model for poly(rA).poly(dT) in solution in which the rA and dT strands are conformationally equivalent. Molecular models were generated for poly(rA).poly(dT) in the B-form based upon the geometrical constraints as obtained from the NOE data. Incorporation of (C-2'-endo pucker, chi congruent to 240 degrees to 260 degrees) into the classical B-form resulted in severe close contacts in the rA chain. By introducing base-displacement, tilt and twist along with concomitant changes in the backbone torsion angles, we were able to generate a B-form for the hybrid poly(rA).poly(dT) fully consistent with the observed NOE data. In the derived model the sugar pucker is C-1'-exo, a minor variant of C-2'-endo and the sugar base torsion is 243 degrees, the remaining torsion angles being: epsilon = 198 degrees, xi = 260 degrees, alpha = 286 degrees, beta = 161 degrees and gamma = 72 degrees; this structure is free of any steric compression and indicates that it is not necessary to switch to C-3'-endo pucker for rA residues in order to accommodate the 2'-OH group. The structure that we have proposed for the polynucleotide RNA-DNA hybrid in solution is in complete agreement with that proposed for a hexamer hybrid in solution from NOE data and is inconsistent with the heteronomous model proposed for the fibrous state.  相似文献   

17.
In an effort to understand the conformational and structural changes in DNA brought about by thymine photodimer, computer modeling and molecular mechanics energy calculations were performed on DNA hexamer and dodecamer duplexes containing a cis-syn photodimer. The conformation of the crystal structure of the cyanoethyl phosphate ester of the thymine dimer (Hruska et al., Biopolymers 25, 1399-1417 (1986)) was used in modeling the photodimer portion. Various starting conformations were used in the modeling procedure and the structures were minimized both retaining and later relaxing the crystallographic geometry of the cyclobutane ring. The results indicate that most of the deformation is restricted to the thymine dimer region, and that the conformational changes decrease rapidly on either side of the region containing the photodimer. The structural changes brought about by the introduction of the photodimer can be accommodated within six base paired duplex without significant bend in the DNA. More conformational changes are observed on the 5'-side of the photodimer than on the 3'-side. The conformational features, such as backbone torsion angles and sugar puckers, of the energy minimized structures are discussed in the context of the solution structures determined by NMR on a series of oligomers containing photodimers (Rycyna et al., Biochemistry 27, 3152-3163 (1988)).  相似文献   

18.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

19.
20.
The potentially Z-DNA-forming sequence d(GTGTACAC) crystallizes as A-DNA   总被引:6,自引:0,他引:6  
(GT)n/(CA)n sequences have stimulated much interest because of their frequent occurrence in eukaryotic DNA and their potential for forming the left-handed Z-DNA structure. We here report the X-ray crystal structure of a self-complementary octadeoxynucleotide, d(GTGTACAC), at 2.5 A resolution. The molecule adopts a right-handed double-helical conformation belonging to the A-DNA family. In this alternating purine-pyrimidine DNA minihelix the roll and twist angles show alternations qualitatively consistent with Calladine's rules. The average tilt angle of 9.3 degrees is between the values found in A-DNA (19 degrees) and B-DNA (-6 degrees) fibers. It is envisaged that such intermediate conformations may render diversity to genomic DNA. The base-pair tilt angles and the base-pair displacements from the helix axis are found to be correlated for the known A-DNA double-helical fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号