首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M R Mazzoni  H E Hamm 《Biochemistry》1989,28(25):9873-9880
The guanyl nucleotide binding regulatory protein of retinal rod outer segments, called Gt, that couples the photon receptor rhodopsin with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, alpha t and beta gamma t. The effect of monoclonal antibody binding to the alpha t subunit of Gt on subunit association has been investigated in the present study. It was previously shown that this monoclonal antibody, mAb 4A, blocks interactions with rhodopsin and its epitope was located within the region Arg310-Phe350 at the COOH terminus of the alpha t subunit. In this paper, we show that mAb 4A disrupts the Gt complex. Gt migrates in 5-20% linear sucrose density gradients as a monomer, with a sedimentation coefficient of 4.1 +/- 0.07 S, while in the presence of mAb 4A, the alpha t and beta gamma t subunits show sedimentation coefficients of 7.7 +/- 0.2 and 3.7 +/- 0.1 S, respectively. The beta gamma t subunit migrates with the same sedimentation rate as pure beta gamma t. Nonimmune rabbit IgG does not modify the sedimentation behavior of Gt. The Fab fragment of mAb 4A also dissociates the Gt complex, as suggested by the change of the sedimentation rate of alpha t. This effect of mAb 4A on Gt subunit association was also confirmed by immunoprecipitation studies in the presence of detergent. In the presence of detergent, subunit association is not affected, but the formation of Gt oligomers and, therefore, the nonspecific precipitation of beta gamma t subunit are reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta subunits are functionally indistinguishable. GTP-dependent hormonal inhibition of adenylate cyclase and that caused by guanine nucleotide analogs seem to result from dissociation of the subunits of Gi. Such inhibition can be explained by reduction of the concentration of the free alpha subunit of Gs as a result of its interaction with the beta subunit of Gi in normal Gs-containing membranes. However, inhibition in S49 lymphoma cyc- cell membranes presumably cannot be explained by the Gi-Gs interaction, since the activity of the alpha subunit of Gs is not detectable in this variant. Several characteristics of Gi-mediated inhibition of adenylate cyclase have been studied in both S49 cyc- and wild type membranes. There are several similarities between inhibition of forskolin-stimulated adenylate cyclase by guanine nucleotides and somatostatin in cyc- and wild type membranes. 1) Somatostatin-induced inhibition of the enzyme is dependent on GTP; nonhydrolyzable GTP analogs are also effective inhibitors. 2) The effect of guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) is essentially irreversible, and somatostatin accelerates GTP gamma S-induced inhibition. 3) Inhibition of adenylate cyclase by somatostatin or Gpp(NH)p is attenuated by treatment of cells with islet-activating protein (IAP). 4) Both cyc- and wild type membranes contain the substrate for IAP-catalyzed ADP-ribosylation (the alpha subunit of Gi). 5) beta Subunit activity in detergent extracts of membranes is liberated by exposure of the membranes to GTP gamma S. The alpha subunit of Gi in such extracts has a reduced ability to be ADP-ribosylated by IAP, which implies that this subunit is in the GTP gamma S-bound form. The resolved subunits of Gi have been tested as regulators of cyc- and wild type adenylate cyclase under a variety of conditions. The alpha subunit of Gi inhibits forskolin-stimulated adenylate cyclase activity in cyc-, while the beta subunit stimulates; these actions are opposite to those seen with wild type membranes. The inhibitory effects of GTP plus somatostatin (or GTP gamma S) and the alpha subunit of Gi are not additive in cyc- membranes. In wild type, the inhibitory effects of the hormone and GTP gamma S are not additive with those of the beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   

4.
Bovine retinas incubated with [3H]myristic acid incorporated detectable radiolabel into only a few proteins. The most heavily labeled was the alpha subunit of the rod outer segment G protein transducin (Gt alpha). The radiolabeled protein was specifically eluted from illuminated membranes in the presence of GTP, displaying the unique solubility properties of Gt alpha. It comigrated with Gt alpha in electrophoresis and chromatography and was immunoprecipitated by Gt alpha-specific antibodies. The radiolabel was confirmed by hydrolysis, chemical derivatization, and chromatography to be amide-linked myristic acid. The solubility of the myristoylated Gt alpha indicates that myristoylation is not sufficient to cause tight membrane association of this normally membrane-bound subunit. Incorporation of [3H]myristate was blocked by the protein synthesis inhibitor cycloheximide, suggesting that that fatty acid group is introduced during or soon after translation in the rod inner segment.  相似文献   

5.
Activation of the stimulatory guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by guanine nucleotides or by Al3+, Mg2+, and F-stabilizes the protein to thermal denaturation or to inactivation by LiBr, guanidine HCl, or urea. Such activation allows the resolution of the active 45,000-Da alpha subunit from the 35,000-Da beta subunit by a high performance gel filtration procedure. Separation of the active alpha subunit has allowed definitive evaluation of the subunit dissociation model for the activation of G/F. The resolved alpha subunit is sufficient to reconstitute the adenylate cyclase activity of the cyc-S49 cell mutant. The alpha subunit alone is also sufficient to activate a preparation of the catalyst of adenylate cyclase that had been resolved from all other identified components of the enzyme system. The resolved alpha subunit displays hydrodynamic properties characteristic of activated G/F. The alpha subunit contains a high affinity guanine nucleotide-binding site. Activation of G/F by guanine nucleotides or by Al3+ + Mg2+ + F- allows resolution of the activated alpha subunit. Reversal of the activated state of the resolved alpha subunit occurs only slowly. Addition of beta subunit enhances the rate of deactivation. Deactivation of the activated alpha subunit by the beta subunit changes the S20,w for G/F activity from 2.0 to 4.0 (in Lubrol), consistent with a formation of the alpha X beta heterodimer. These data, taken in aggregate, constitute proof for the proposed mechanism of activation of G/F by non-hydrolyzable analogs of GTP and by Al3+, Mg2+, and F-. They are analogous to data obtained for transducin, the GTP-binding regulatory protein from vertebrate rod outer segment discs, and for the putative inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase (the substrate for islet-activating protein). The model provides several powerful tests for study of mechanisms of hormonal regulation of adenylate cyclase in membranes.  相似文献   

6.
The stimulatory guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase is activated by exposure to guanine nucleotide analogs or to Al3+ + F-. Activated G/F can reconstitute adenylate cyclase activity when mixed with the catalytic moiety of the enzyme system in the absence of an effective free concentration of stimulatory ligand. Activation is explained by dissociation of the alpha (45,000-Da) and beta (35,000-Da) subunits of G/F. The beta subunit of G/F facilitates reversal of the activated state of the regulatory protein. This phenomenon, which has been exploited as an assay for the resolved beta subunit, has the following properties. 1) Addition of the resolved beta subunit to fluoride-activated G/F increases the initial rate of deactivation from a t 1/2 of 10 min to less than 0.5 min. 2) The enhancement of the rate of deactivation is a saturable process with a K 1/2 value of 60 ng/ml (approximately 2 nM). 3) G/F does not display beta subunit activity unless the alpha subunit has been inactivated or the subunits have been resolved. beta Subunit activity is measurable in detergent extracts of rabbit liver membranes or plasma membranes from S49 cell clones. The activity in such extracts is similar to that found with purified G/F, in that incubation at 30 degrees C in the presence of Mg2+ is required for its expression. However, cyc-, UNC, and H21a (S49 cell mutants with deficient or altered G/F activity) have amounts of beta subunit activity similar to that found in wild type S49 cells. Furthermore, the amount of beta subunit activity exceeds by 5- to 10-fold the amount expected based on the quantity of G/F in wild type extracts. All of the beta subunit activity in detergent extracts of liver membranes can be purified as a 35,000-Da polypeptide that is indistinguishable from the beta subunit of G/F. The beta subunit activity in extracts of cyc- membranes is expressed after incubation with guanine nucleotide analogs, implying association of the beta subunit with a GTP-binding protein. By analysis of the chromatographic behavior of G/F and the recently identified 41,000/35,000-Da heterodimeric substrate for the islet-activating protein from Bordetella pertussis, we have identified the 41,000-Da subunit of the substrate for islet-activating protein as the GTP-binding protein with which the majority of the beta subunit activity associates. These data have direct bearing on the mechanisms of hormonal activation and inhibition of adenylate cyclase.  相似文献   

7.
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis.  相似文献   

8.
In this report, we show that fluoride activates dark-adapted rod outer segment phosphodiesterase, and that this activation is mediated, in analogy with adenylate cyclase, through a GTP binding protein. The GTP binding protein is released from dark-adapted rod outer segment membranes by exposure to fluoride and subsequent centrifugation. The 39-kilodalton subunit of the GTP binding protein, released from the membrane by this procedure, exhibits altered susceptibility to limited trypsin proteolysis, identical to that seen when hydrolysis-resistant GTP analogs are bound to that subunit. Repeated exposure of dark-adapted rod outer segment membranes to fluoride and subsequent centrifugation results in maximal activation of the membrane-bound phosphodiesterase. Thus, activation of phosphodiesterase by fluoride in the dark appears similar to fluoride activation of adenylate cyclase.  相似文献   

9.
The ability of a series of B16 melanoma clones to form experimental lung metastases in syngeneic mice has been shown to correlate positively with adenylate cyclase activity. (Sheppard et al, Int. J. Cancer 37 (1986) 713-722). To begin to identify the components of the adenylate cyclase complex that account for enhanced enzyme activity in highly metastatic tumor populations, cholate extracts containing the GTP-binding protein GS from B16 melanoma clones of different metastatic capacities were reconstituted with membranes prepared from S49 cyc-, a variant lymphoma cell line that lacks GS function. The results revealed that extracts from a highly metastatic B16 clone (F10-C23) reconstituted significantly greater adenylate cyclase activities in S49 cyc- membranes than parallel preparations from a B16 clone (F1-C29) of low metastatic capacity. The data suggest that aberrations in GS function may contribute to the heightened responsiveness of adenylate cyclase observed in B16 melanoma clones of increased metastatic potential.  相似文献   

10.
Four members of a family of GTP-binding proteins (G-proteins) which translate stimulation of extracellular receptors into regulation of intracellular enzymes were isolated from the bovine central nervous system. These proteins were examined for functional similarities and cross-reactivity with antibodies to the G-protein (transducin, Gt) from the photoreceptor system. Two proteins, Gs and Gi, can be distinguished by their respective abilities to stimulate or inhibit adenylate cyclase. The activated alpha subunits of Gt and a fourth member of the family, Go, did not affect this enzyme. Gt was shown to be unique in its ability to stimulate cGMP-dependent phosphodiesterase. While functionally diverse, the G-proteins were shown to have some common antigenic properties. Antibodies directed against the beta subunit of Gt recognize the beta 36 subunits of all preparations but not a putative second beta 35 subunit. Antibodies specific for the alpha subunit of Gt did not recognize other alpha subunits when immune blots from sodium dodecyl sulfate gels were examined. However, Go alpha, but not Gs alpha or Gi alpha, reacted strongly with the antibodies when the native subunit was spotted directly. This suggests that Go alpha and Gt alpha have homologous structural determinants. An antiserum that recognized Gt gamma did not recognize gamma subunits from other sources. These data support the proposed diversity of function and similarity of structure among the four G-proteins. The alpha and potentially gamma subunits appear to be responsible for the specificity of function.  相似文献   

11.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

12.
G/F and transducin are guanine nucleotide-binding regulatory proteins that mediate activation of adenylate cyclase and of a rod outer segment cyclic GMP-specific phosphodiesterase, respectively. The substrate for islet-activating protein is a third guanine nucleotide-binding protein that is postulated to mediate inhibition of adenylate cyclase. The extent of structural homology among subunits of all three proteins was examined by analyses of amino acid compositions and electrophoretic patterns of proteolytic peptides. The lower molecular weight subunits (beta subunits; Mr = 35,000) of these proteins have identical amino acid compositions and yield similar peptides upon proteolysis with Staphylococcus aureus V8 protease and elastase. The higher molecular weight subunits (alpha subunits; Mr = 39,000, 41,000, and 45,000) are also similar to each other in these respects. Similarity between the subunits of transducin and the islet-activating protein (IAP) substrate is especially evident. Substantial differences do, however, exist between the lower and higher molecular weight subunits within each protein. In addition, evidence was obtained that the 41,000-Da subunit of the IAP substrate is not derived from the 45,000-Da subunit of G/F. It is concluded that transducin, the IAP substrate, and G/F represent a family of structurally homologous guanine nucleotide-binding regulatory proteins.  相似文献   

13.
Adenylate cyclase in synaptic plasma membranes from rat brain is activated by α-chymotrypsin or trypsin. These proteases also activate adenylate cyclase reconstituted from the catalytic subunit of adenylate cyclase and the partially purified fraction of the GTP-binding proteins containing both the stimulatory and inhibitory GTP-binding proteins. Properties of the activation of reconstituted adenylate cyclase by the proteases are as follows. (1) The proteases do not directly activate the catalytic subunit. However, the pre-treatment of the partially purified GTP-binding proteins with α-chymotrypsin (100 μg/ml) increases the subsequently reconstituted cyclase activity at least 3-fold. Trypsin (10–30 μg/ml) much more weakly enhances the cyclase activity. (2) α-Chymotrypsin and trypsin synergistically activate the cyclase. (3) Trypsin but not α-chymotrypsin no longer activates the cyclase when the purified stimulatory GTP-binding protein (Gs) replaces the partially purified GTP-binding proteins. (4) The stimulatory effects of α-chymotrypsin and trypsin on the cyclase activity are little or slight unless 5′-guanylylimidodiphosphate (Gpp(NH)p) is present in the reconstitution. (5) The purified βγ-subunits of the GTP-binding proteins markedly inhibit adenylate cyclase. This inhibition is nearly completely attenuated by treating the βα-subunits with α-chymotrypsin (> 10 μg/ml). (6) Trypsin (1–10 μg/ml) inactivates the GTPase of the α-subunit of the inhibitory GTP-binding protein (Gi). This inactivation of the GTPase seems to correlate with the activation of the reconstituted adenylate cyclase by trypsin.We conclude that two distinct protein components are involved in the activation of adenylate cyclase by α-chymotrypsin and trypsin. One component sensitive to α-chymotrypsin is probably the βγ-subunits of the GTP-binding proteins. The other component sensitive to trypsin may be the α-subunit of Gi.  相似文献   

14.
A unique feature of eucaryotic adenylate cyclases is their interaction with GTP-binding proteins that mediate hormonal responses. Until now, there has been no evidence for regulation of Escherichia coli adenylate cyclase by a GTP-binding protein. We describe here that the most abundant protein in E. coli, the GTP-binding protein EF-Tu, which is important as an elongation factor in protein synthesis, also serves as a stimulator of adenylate cyclase activity. Homogeneous EF-Tu specifically increased the activity of purified adenylate cyclase as much as 70%; other E. coli GTP-binding proteins had no effect on enzyme activity. A study of the guanine nucleotide specificity for EF-Tu-mediated stimulation of adenylate cyclase activity suggested that the preferred activator is EF-Tu X GDP. To account for the GTP-specific stimulation of adenylate cyclase activity observed in intact cells, we propose that the nucleotide specificity for EF-Tu-dependent activation of adenylate cyclase is governed by other factors in the cell.  相似文献   

15.
The effect of forskolin on adenylate cyclase in S49 wild type and cyc- cells was tested. Forskolin stimulated adenylate cyclase activity in cyc- membranes, particularly with Mn++ as cofactor. Forskolin stimulation of adenylate cyclase in wild type membranes was greater than in cyc- membranes, and the ability of forskolin to stimulate cyc- membranes was enhanced by Lubrol PX extracts of human erythrocyte membranes. Compared to its potent effect on intact wild type cells, forskolin was a poor stimulator of cAMP accumulation in cyc- cells. Cyc- cells proliferated in medium containing forskolin, while the growth of wild type cells in such medium was inhibited and the wild type cells ultimately died. Clones selected from a suspension of wild type cells on the basis of forskolin resistance showed the characteristics of cyc- cells. Thus, forskolin does not substantially activate adenylate cyclase activity in intact cyc- cells. Our data indicate that the guanine nucleotide regulatory protein (G/F) enhances forskolin activation of adenylate cyclase.  相似文献   

16.
GTP-binding proteins which participate in signal transduction share a common heterotrimeric structure of the alpha beta gamma-type. In the activated state, the alpha subunit dissociates from the beta gamma complex but remains anchored in the membrane. The alpha subunits of several GTP-binding proteins, such as Go and Gi, are myristoylated at the amino terminus (Buss, J. E., S. M. Mumby, P. J. Casey, A. G. Gilman, and B. M. Sefton. 1987. Proc. Natl. Acad. Sci. USA. 84:7493-7497). This hydrophobic modification is crucial for their membrane attachment. The absence of fatty acid on the alpha subunit of Gs (Gs alpha), the protein involved in adenylate cyclase activation, suggests a different mode of anchorage. To characterize the anchoring domain of Gs alpha, we used a reconstitution model in which posttranslational addition of in vitro-translated Gs alpha to cyc- membranes (obtained from a mutant of S49 cell line which does not express Gs alpha) restores the coupling between the beta-adrenergic receptor and adenylate cyclase. The consequence of deletions generated by proteolytic removal of amino acid sequences or introduced by genetic removal of coding sequences was determined by analyzing membrane association of the proteolyzed or mutated alpha chains. Proteolytic removal of a 9-kD amino-terminal domain or genetic deletion of 28 amino-terminal amino acids did not modify the anchorage of Gs alpha whereas proteolytic removal of a 1-kD carboxyterminal domain abolished membrane interaction. Thus, in contrast to the myristoylated alpha subunits which are tethered through their amino terminus, the carboxy-terminal residues of Gs alpha are required for association of this protein with the membrane.  相似文献   

17.
The effects of immunoglobulin G2a binding proteins isolated from P388D1 cells on adenylate cyclase of cyc- cells were investigated to explore a potential role of Fc gamma 2a receptor in the activation of the adenylate cyclase system. Immunoglobulin G (IgG) binding proteins obtained from the detergent lysate of P388D1 cells by affinity chromatography on IgG-Sepharose were separated into two fractions (denoted as IgG-B1 and IgG-B2) by Sephadex G-100 gel filtration in the presence of 6 M urea. Polyacrylamide gel electrophoretic analysis in the presence of sodium dodecyl sulfate revealed that the major component in the IgG-B1 fraction was a protein of molecular weight near 50 000, whereas the IgG-B2 fraction contained two major components of molecular weight near 25 000 and 17 000. Both IgG-B1 and -B2 proteins can be inserted into liposome consisting of phosphatidylcholine and phosphatidylethanolamine. Liposomes containing IgG-B1 proteins effectively inhibited EA2a, but not EA2b, rosetting by either S49 or P388D1 cells, suggesting their proper orientation within liposome, whereas IgG-B2-containing liposome failed to do so. Simultaneous fusion of the liposomes containing IgG-B1 and -B2 proteins with guanine nucleotide binding stimulatory (G/F) protein/Fc gamma 2aR-deficient cyc- cells resulted in the formation of the hybrid membrane whose adenylate cyclase responds to immune complex formed with IgG2a-subclass antibody (IC2a) by about a 2.7-fold increase in the activity over the control (hybrid membrane between cyc- cells and liposome containing no protein). The response appeared to be specific, since IC2b failed to stimulate the enzymatic activity of this hybrid membrane. Furthermore, IgG-B1 and -B2 proteins were able to confer their activating effects on the enzyme only in concert, since the fusion of liposomes containing either type of protein alone with cyc- cells did not result in the activation of adenylate cyclase of cyc- membrane. IgG-B1 and -B2 proteins could also confer their activating effects in concert to the enzyme in cholate-solubilized forms. Such activation was dependent on the concentration of IC2a, suppressed by the chelating agent ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, and significantly inhibited by trifluoperazine, suggesting potential involvement of Ca2+ and calmodulin in the activating process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pertussis toxin abolishes hormonal inhibition of adenylate cyclase, hormonal stimulation of inositol 1,4,5-trisphosphate accumulation in rat fat-cells, and catalyses the ADP-ribosylation of two peptides, of Mr 39,000 and 41,000 [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564]. The 41,000-Mr peptide is the alpha-subunit of the G-protein, referred to as Gi, that is believed to mediate inhibitory control of adenylate cyclase by hormones. The nature of the 39,000-Mr substrate for pertussis toxin was investigated. The fat-cell 39,000-Mr peptide was compared structurally and immunologically with the alpha-subunits of two other G-proteins, Gt isolated from the rod outer segments of bovine retina and Go isolated from bovine brain. After radiolabelling in the presence of pertussis toxin and [32P]NAD+, the electrophoretic mobilities of the fat-cell 39,000-Mr peptide and the alpha-subunits of Go and Gt were nearly identical. Partial proteolysis of these ADP-ribosylated proteins generates peptide patterns that suggest the existence of a high degree of homology between the fat-cell 39,000-Mr peptide and the alpha-subunit of Go. Antisera raised against purified G-proteins and their subunits were used to probe immunoblots of purified Gt, Gi, Go, and fat-cell membrane proteins. Although recognizing the 36,000-Mr beta-subunit band of Gt, Gi, Go and a 36,000-Mr fat-cell peptide, antisera raised against Gt failed to recognize either the 39,000- or the 41,000-Mr peptides of fat-cells or the alpha-subunits of Go and Gi. Antisera raised against the alpha-subunit of Go, in contrast, recognized the 39,000-Mr peptide of rat fat-cells, but not the alpha-subunit of either Gi or Gt. These data establish the identity of Go, in addition to Gi, in fat-cell membranes and suggest the possibility that either Go or Gi alone, or both, may mediate hormonal regulation of adenylate cyclase and phospholipase C.  相似文献   

20.
The relationship between Fc receptor specific for IgG2b (Fc gamma 2bR) and membrane adenylate cyclase was investigated. The specific binding of IgG2b immune complexes to P388D1 cell surface Fc gamma 2bR was found to inhibit the basal, forskolin-stimulated, and NaF-stimulated activities of membrane adenylate cyclase by 53%, 57%, and 31%, respectively. On the other hand, the binding of IgG2a immune complexes to cell surface Fc gamma 2aR increased the basal activity about 2.5-fold and the forskolin- and NaF-stimulated activities slightly. The fusion of liposomes containing Fc gamma 2bR, which was obtained as phosphatidylcholine (PC) binding protein as previously described, with the cyc- membrane preparations resulted in the marked suppression of membrane adenylate cyclase, whereas the fusion of liposomes containing Fc gamma 2a, which was obtained as IgG-binding protein, led to about a 2.7-fold increase. The Fc gamma 2bR-mediated inhibition of adenylate cyclase may be due to the temporary change of the lipid environment caused by the action of phospholipase A2, which was previously shown to be associated with Fc gamma 2bR, since (1) addition of snake venom phospholipase A2 or cholate-solubilized PC-binding protein to P388D1 membrane was found to inhibit adenylate cyclase in a dose-dependent manner, (2) prior treatment of snake venom phospholipase A2 or PC-binding protein with a specific inhibitor, p-bromophenacyl bromide, significantly reduced their inhibitory action, and (3) a product of phospholipase A2 action, arachidonic acid, was found to be an effective inhibitor of membrane adenylate cyclase, whereas the other product, lysophosphatidylcholine, was much less inhibitory than arachidonic acid. Arachidonic acid appeared to interfere with the functions of both guanine nucleotide-binding stimulatory (Gs) protein and the catalytic subunit of adenylate cyclase, since exogenously added arachidonic acid significantly suppressed the GTPase activity of P388D1 membrane and the forskolin response of the adenylate cyclase activity of Gs protein deficient cyc- membrane. The primary site of action of lysophosphatidylcholine is not clear but may be other than Gs protein and/or the catalytic subunit, since it did not change either GTPase activity of P388D1 membrane or the response to forskolin of adenylate cyclase of cyc- membrane. The Fc gamma 2bR/phospholipase A2 mediated inhibition of adenylate cyclase would be a transient event in viable cells, since phospholipase A2 did not inhibit adenylate cyclase in the presence of microsomal fraction, mitochondria, and coenzyme A, suggesting the occurrence of rapid acylation of CoA and reacylation of lysolecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号