首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Receptor recycling involves two endosome populations, peripheral early endosomes and perinuclear recycling endosomes. In polarized epithelial cells, either or both populations must be able to sort apical from basolateral proteins, returning each to its appropriate plasma membrane domain. However, neither the roles of early versus recycling endosomes in polarity nor their relationship to each other has been quantitatively evaluated. Using a combined morphological, biochemical, and kinetic approach, we found these two endosome populations to represent physically and functionally distinct compartments. Early and recycling endosomes were resolved on Optiprep gradients and shown to be differentially associated with rab4, rab11, and transferrin receptor; rab4 was enriched on early endosomes and at least partially depleted from recycling endosomes, with the opposite being true for rab11 and transferrin receptor. The two populations were also pharmacologically distinct, with AlF4 selectively blocking export of transferrin receptor from recycling endosomes to the basolateral plasma membrane. We applied these observations to a detailed kinetic analysis of transferrin and dimeric IgA recycling and transcytosis. The data from these experiments permitted the construction of a testable, mathematical model which enabled a dissection of the roles of early and recycling endosomes in polarized receptor transport. Contrary to expectations, the majority (>65%) of recycling to the basolateral surface is likely to occur from early endosomes, but with relatively little sorting of apical from basolateral proteins. Instead, more complete segregation of basolateral receptors from receptors intended for transcytosis occurred upon delivery to recycling endosomes.  相似文献   

2.
Small GTPases of the rab family control distinct steps of intracellular transport. The function of their GTPase activity is not completely understood. To investigate the role of the nucleotide state of rab5 in the early endocytic pathway, the effects of two mutants with opposing biochemical properties were tested. The Q79L mutant of rab5, analogous with the activating Q61L mutant of p21-ras, was found to have a strongly decreased intrinsic GTPase activity and was, unlike wild-type rab5, found mainly in the GTP-bound form in vivo. Expression of this protein in BHK and HeLa cells led to a dramatic change in cell morphology, with the appearance of unusually large early endocytic structures, considerably larger than those formed upon overexpression of wild-type rab5. An increased rate of transferrin internalization was observed in these cells, whereas recycling was inhibited. Cytosol containing rab5 Q79L stimulated homotypic early endosome fusion in vitro, even though it contained only a small amount of the isoprenylated protein. A different mutant, rab5 S34N, was found, like the inhibitory p21-ras S17N mutant, to have a preferential affinity for GDP. Overexpression of rab5 S34N induced the accumulation of very small endocytic profile and inhibited transferrin endocytosis. This protein inhibited fusion between early endosomes in vitro. The opposite effects of the rab5 Q79L and S34N mutants suggest that rab5:GTP is required prior to membrane fusion, whereas GTP hydrolysis by rab5 occurs after membrane fusion and functions to inactivate the protein.  相似文献   

3.
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains while selectively allowing transport of proteins and lipids from one pole to the opposite by transcytosis. The small GTPase, rab17, a member of the rab family of regulators of intracellular transport, is specifically induced during cell polarization in the developing kidney. We here examined its intracellular distribution and function in both nonpolarized and polarized cells. By confocal immunofluorescence microscopy, rab17 colocalized with internalized transferrin in the perinuclear recycling endosome of BHK-21 cells. In polarized Eph4 cells, rab17 associated with the apical recycling endosome that has been implicated in recycling and transcytosis. The localization of rab17, therefore, strengthens the proposed homology between this compartment and the recycling endosome of nonpolarized cells. Basolateral to apical transport of two membrane-bound markers, the transferrin receptor and the FcLR 5-27 chimeric receptor, was specifically increased in Eph4 cells expressing rab17 mutants defective in either GTP binding or hydrolysis. Furthermore, the mutant proteins stimulated apical recycling of FcLR 5-27. These results support a role for rab17 in regulating traffic through the apical recycling endosome, suggesting a function in polarized sorting in epithelial cells.  相似文献   

4.
Mammalian epithelial cell plasma membrane domains are separated by junctional complexes supported by actin. The extent to which actin acts elsewhere to maintain cell polarity remains poorly understood. Using latrunculin B (Lat B) to depolymerize actin filaments, several basolateral plasma membrane proteins were found to lose their polarized distribution. This loss of polarity did not reflect lateral diffusion through junctional complexes because a low-density lipoprotein receptor mutant lacking a functional endocytosis signal remained basolateral after Lat B treatment. Furthermore, Lat B treatment did not facilitate membrane diffusion across the tight junction as observed with ethylenediaminetetraacetic acid or dimethyl sulfoxide treatment. Detailed analysis of transferrin recycling confirmed Lat B depolarized recycling of transferrin from endosomes to the basolateral surface. Kinetic analysis suggested sorting was compromised at both basolateral early endosomes and perinuclear recycling endosomes. Despite loss of function, these two endosome populations remained distinct from each other and from early endosomes labeled by apically internalized ligand. Furthermore, apical and basolateral early endosomes were functionally distinct populations that directed traffic to a single common recycling endosomal compartment even after Lat B treatment. Thus, filamentous actin may help to guide receptor traffic from endosomes to the basolateral plasma membrane.  相似文献   

5.
《The Journal of cell biology》1995,130(6):1447-1459
Certain epithelial cells synthesize the polymeric immunoglobulin receptor (pIgR) to transport immunoglobulins (Igs) A and M into external secretions. In polarized epithelia, newly synthesized receptor is first delivered to the basolateral plasma membrane and is then, after binding the Ig, transcytosed to the apical plasma membrane, where the receptor-ligand complex is released by proteolytic cleavage. In a previous work (Ikonen et al., 1993), we implied the existence of a dendro-axonal transcytotic pathway for the rabbit pIgR expressed in hippocampal neurons via the Semliki Forest Virus (SFV) expression system. By labeling surface-exposed pIgR in live neuronal cells, we now show (a) internalization of the receptor from the dendritic plasma membrane to the dendritic early endosomes, (b) redistribution of the receptor from the dendritic to the axonal domain, (c) inhibition of this movement by brefeldin A (BFA) and (d) stimulation by the activation of protein kinase C (PKC) via phorbol myristate acetate (PMA). In addition, we show that a mutant form of the receptor lacking the epithelial basolateral sorting signal is directly delivered to the axonal domain of hippocampal neurons. Although this mutant is internalized into early endosomes, no transcytosis to the dendrites could be observed. In epithelial Madin-Darby Canine Kidney (MDCK) cells, the mutant receptor could also be internalized into basolaterally derived early endosomes. These results suggest the existence of a dendro-axonal transcytotic pathway in neuronal cells which shares similarities with the basolateral to apical transcytosis in epithelial cells and constitute the basis for the future analysis of its physiological role.  相似文献   

6.
rab4 is a ras-like GTP-binding protein that associates with early endosomes in a cell cycle-dependent fashion. To determine its role during endocytosis, we generated stable cell lines that overexpressed mutant or wild-type rab4. By measuring endocytosis, transport to lysosomes, and recycling, we found that overexpression of wild-type rab4 had differential effects on the endocytic pathway. Although initial rates of internalization and degradation were not inhibited, the transfectants exhibited a 3-fold decrease in fluid phase endocytosis as well as an alteration in transferrin receptor (Tfn-R) recycling. Wild-type rab4 caused a redistribution of Tfn-R's from endosomes to the plasma membrane. It also blocked iron discharge by preventing the delivery of Tfn to acidic early endosomes, instead causing Tfn accumulation in a population of nonacidic vesicles and tubules. rab4 thus appears to control the function or formation of endosomes involved in recycling.  相似文献   

7.
Polarized cells such as epithelial cells and neurons have distinct endosomal compartments associated with different plasma membrane domains. The endosomes of the neuronal cell body and the basolateral cytoplasm of epithelial cells are thought to perform cellular “housekeeping” functions such as the uptake of nutrients and metabolites, while the endosomes in the apical cytoplasm or axons are thought to be specialized for the sorting and transcytosis of cell type–specific ligands and receptors. However, it is not known if nonpolarized cells such as fibroblasts contain a specialized endosomal compartment analogous to the specialized endosomes found in neurons and epithelia. We have expressed a protein that is normally found in the apical early endosomes of developing intestinal epithelial cells in normal rat kidney fibroblasts. This apical endosomal marker, called endotubin, is targeted to early endosomes in transfected fibroblasts, and is present in peripheral as well as perinuclear endosomes. The peripheral endosomes that contain endotubin appear to exclude transferrin, fluid phase markers, and the mannose-6-phosphate receptor, although in the perinuclear region colocalization of endotubin and these markers is present. In addition, endotubin positive structures do not tubulate in response to brefeldin A and instead redistribute to a diffuse perinuclear location. Since this endosomal compartment has many of the characteristics of an apical or axonal endosomal compartment, our results indicate that nonpolarized cells also contain a specialized early endosomal compartment.  相似文献   

8.
Early endosomes in PC12 cells are an important site for the formation of synaptic-like microvesicles and constitutive recycling vesicles. By immunogold electron microscopy, the small GTPase rab4 was localized to early endosomes and numerous small vesicles in the cell periphery and Golgi area of PC12 cells. Overexpression of GTPase-deficient Q67Lrab4 increased the number of early endosome-associated and cytoplasmic vesicles, whereas expression of GDP-bound S22Nrab4 significantly increased the length of early endosomal tubules. In parallel, Q67Lrab4 induced a shift in rab4, VAMP2, and TfR label from early endosomes to peripheral vesicles, whereas S22Nrab4 increased early endosome labeling of all three proteins. These observations were corroborated by early endosome budding assays. Together, our data document a thus far unrecognized role for rab4 in the formation of synaptic-like microvesicles and add to our understanding of the formation of constitutive recycling vesicles from early endosomes.  相似文献   

9.
We describe the characterization of an 80-kDa protein cross-reacting with a monoclonal antibody against the human La autoantigen. The 80-kDa protein is a variant of rabip4 with an N-terminal extension of 108 amino acids and is expressed in the same cells. For this reason, we named it rabip4'. rabip4' is a peripheral membrane protein, which colocalized with internalized transferrin and EEA1 on early endosomes. Membrane association required the presence of the FYVE domain and was perturbed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Expression of a dominant negative rabip4' mutant reduced internalization and recycling of transferrin from early endosomes, suggesting that it may be functionally linked to rab4 and rab5. In agreement with this, we found that rabip4' colocalized with the two GTPases on early endosomes and bound specifically and simultaneously to the GTP form of both rab4 and rab5. We conclude that rabip4' may coordinate the activities of rab4 and rab5, regulating membrane dynamics in the early endosomal system.  相似文献   

10.
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.  相似文献   

11.
Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique model to compare the apical and basolateral endocytic pathways of a single ligand, transferrin, in polarized epithelial cells.  相似文献   

12.
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolateral surface of MDCK cells IgA is found to accumulate under the apical plasma membrane in a compartment that is accessible to two apically added membrane markers: anti-secretory component Fab fragments, and avidin internalized from the biotinylated apical pole of the cell. This accumulation occurs in the presence of apical trypsin, which prevents internalization of the ligand from the apical cell surface. Using a modification of the diaminobenzidine density-shift assay, we estimate that approximately 80% of basolaterally internalized IgA resides in the apical endosomal compartment. In addition, approximately 50% of basolaterally internalized transferrin, a basolateral recycling protein, has access to this apical endosomal compartment and is efficiently recycled back to the basolateral surface. Microtubules are required for the organization of the apical endosomal compartment and it is dispersed in nocodazole-treated cells. Moreover, this compartment is largely inaccessible to fluid-phase markers added to either pole of the cell, and therefore seems analogous to the recycling endosome described in nonpolarized cells. We propose a model in which transcytosis is not a specialized pathway that uses unique transcytotic vesicles, but rather combines portions of pathways used by non- transcytosing molecules.  相似文献   

13.
Using a microinjection approach to study apical plasma membrane protein trafficking in hepatic cells, we found that specific inhibition of Vps34p, a class III phosphoinositide 3 (PI-3) kinase, nearly perfectly recapitulated the defects we reported for wortmannin-treated cells (Tuma, P.L., C.M. Finnegan, J.-H Yi, and A.L. Hubbard. 1999. J. Cell Biol. 145:1089-1102). Both wortmannin and injection of inhibitory Vps34p antibodies led to the accumulation of resident apical proteins in enlarged prelysosomes, whereas transcytosing apical proteins and recycling basolateral receptors transiently accumulated in basolateral early endosomes. To understand how the Vps34p catalytic product, PI3P, was differentially regulating endocytosis from the two domains, we examined the PI3P binding protein early endosomal antigen 1 (EEA1). We determined that EEA1 distributed to two biochemically distinct endosomal populations: basolateral early endosomes and subapical endosomes. Both contained rab5, although the latter also contained late endosomal markers but was distinct from the transcytotic intermediate, the subapical compartment. When PI3P was depleted, EEA1 dissociated from basolateral endosomes, whereas it remained on subapical endosomes. From these results, we conclude that PI3P, via EEA1, regulates early steps in endocytosis from the basolateral surface in polarized WIF-B cells. However, PI3P must use different machinery in its regulation of the apical endocytic pathway, since later steps are affected by Vps34p inhibition.  相似文献   

14.
Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial‐specific clathrin adaptor AP‐1B. Some native epithelia lack AP‐1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP‐1B‐deficient epithelia to relocate AP‐1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP‐1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP‐1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus‐end kinesin KIF16B and non‐centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a‐dependent TfR recycling pathway of non‐polarized cells. They define a transcytotic pathway important for the physiology of native AP‐1B‐deficient epithelia and report the first microtubule motor involved in transcytosis.  相似文献   

15.
The rab11 GTPase has been localized to both the Golgi and recycling endosomes; however, its Golgi-associated function has remained obscure. In this study, rab11 function in exocytic transport was analyzed by using two independent means to perturb its activity. First, expression of the dominant interfering rab11S25N mutant protein led to a significant inhibition of the cell surface transport of vesicular stomatitis virus (VSV) G protein and caused VSV G protein to accumulate in the Golgi. On the other hand, the expression of wild-type rab11 or the activating rab11Q70L mutant had no adverse effect on VSV G transport. Next, the membrane association of rab11, which is crucial for its function, was perturbed by modest increases in GDP dissociation inhibitor (GDI) levels. This led to selective inhibition of the trans-Golgi network to cell surface delivery, whereas endoplasmic reticulum–to–Golgi and intra-Golgi transport were largely unaffected. The transport inhibition was reversed specifically by coexpression of wild-type rab11 with GDI. Under the same conditions two other exocytic rab proteins, rab2 and rab8, remained membrane bound, and the transport steps regulated by these rab proteins were unaffected. Neither mutant rab11S25N nor GDI overexpression had any impact on the cell surface delivery of influenza hemagglutinin. These data show that functional rab11 is critical for the export of a basolateral marker but not an apical marker from the trans-Golgi network and pinpoint rab11 as a sensitive target for inhibition by excess GDI.  相似文献   

16.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

17.
Rab 7: an important regulator of late endocytic membrane traffic   总被引:20,自引:5,他引:15       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1435-1452
Rab5 and rab7 proteins belong to a superfamily of small molecular weight GTPases known to be associated with early and late endosomes, respectively. The rab5 protein plays an important regulatory role in early endocytosis, yet the function of rab7 protein was previously uncharacterized. This question was addressed by comparing the kinetics of vesicular stomatitis virus (VSV) G protein internalization in baby hamster kidney cells overexpressing wild-type or dominant negative mutant forms of the rab7 protein (rab7N125I and rab7T22N). Overexpression of wild-type rab7 protein allowed normal transport to late endosomes (mannose 6-phosphate receptor positive), while the rab7N125I mutant caused the VSV G protein to accumulate specifically in early (transferrin receptor positive) endosomes. Horseradish peroxidase and paramyxovirus SV5 hemagglutinin-neuraminidase (HN) were used in quantitative biochemical assays to further demonstrate that rab7 function was not required for early internalization events, but was crucial in downstream degradative events. The characteristic cleavage of SV5 HN in the late endosome distinguishes internalization from transport to later stages of the endocytic pathway. Mutant rab7N125I or rab7T22N proteins had no effect on the internalization of either horseradish peroxidase or SV5 HN protein. In contrast, the mutant proteins markedly inhibited the subsequent cleavage of the SV5 HN protein. Taken together, these data support a key role for rab7, downstream of rab5, in regulating membrane transport leading from early to late endosomes. We compare our findings to those obtained for the yeast homologues Ypt51p, Ypt52p, Ypt53p, and Ypt7p.  相似文献   

18.
Polarized epithelial cells maintain the polarized distribution of basolateral and apical membrane proteins through a process of receptor-mediated endocytosis, sorting, and then recycling to the appropriate membrane domain. We have previously shown that the small GTP-binding proteins, Rab11a and Rab25, are associated with the apical recycling system of Madin-Darby canine kidney cells. Here we have utilized inducible expression of wild-type, dominant negative, and constitutively active mutants to directly compare the functions of Rab25 and Rab11a in postendocytic vesicular transport. We found that a Rab11a mutant deficient in GTP binding, Rab11aS25N, potently inhibited both transcytosis and apical recycling yet failed to inhibit transferrin recycling. Similarly, expression of either wild type Rab25 or the active mutant Rab25S21V inhibited both apical recycling and transcytosis of IgA by greater than 50% but had no effect on basolateral recycling of transferrin. Interestingly, the GTPase-deficient mutant Rab11aS20V inhibited basolateral to apical transcytosis of IgA, but had no effect on either apical or basolateral recycling. These results indicate that neither Rab11a nor Rab25 function in the basolateral recycling of transferrin in polarized Madin-Darby canine kidney cells cells, consistent with recent morphological observations by others. Thus, transferrin receptors must be recycled to the plasma membrane prior to sorting of apically directed cargoes into Rab11a/Rab25-positive apical recycling endosomes.  相似文献   

19.
By raising monoclonal antibodies to the apical surface of Caco-2 cells we have identified a membrane protein (p100) that internalizes and recycles constitutively between the apical plasma membrane and endosomes in the apical cytoplasm. By applying tracers bound to the transferrin receptor, which internalizes and recycles back to the basolateral border, we demonstrate that the apical endosomes containing p100 include a subset of multivesticular bodies (MVB), which are also accessible to proteins arriving from the basolateral endosome. Tracers bound to EGF receptors and alpha-2-macroglobulin, which internalize from the basolateral border and are degraded, probably in lysosomes, also pass through the p100-containing MVB. These studies therefore suggest that the apical cytoplasm of Caco-2 cells contains a population of MVB capable of receiving membrane proteins trafficking in from both apical and basolateral borders and then routing them to a variety of cell surface and intracellular destinations. The differential distribution of apical and basolateral tracers within the 50-nm-diameter tubules connected to these p100-positive apical MVB suggests that the destination of proteins trafficking from the MVB back to apical and basolateral surfaces is determined by the tubules to which they gain access.  相似文献   

20.
Rab22a is a member of the Rab family of small GTPases that localizes in the endocytic pathway. In CHO cells, expression of canine Rab22a (cRab22a) causes a dramatic enlargement of early endocytic compartments. We wondered whether transferrin recycling is altered in these cells. Expression of the wild-type protein and a GTP hydrolysis-deficient mutant led to the redistribution of transferrin receptor to large cRab22a-positive structures in the periphery of the cell and to a significant decrease in the plasma membrane receptor. Kinetic analysis of transferrin uptake indicates that internalization and early recycling were not affected by cRab22a expression. However, recycling from large cRab22a-positive compartments was strongly inhibited. A similar effect on transferrin transport was observed when human but not canine Rab22a was expressed in HeLa cells. After internalization for short periods of time (5 to 8 min) or at a reduced temperature (16 degrees C), transferrin localized with endogenous Rab22a in small vesicles that did not tubulate with brefeldin A, suggesting that the endogenous protein is present in early/sorting endosomes. Rab22a depletion by small interfering RNA disorganized the perinuclear recycling center and strongly inhibited transferrin recycling. We speculate that Rab22a controls the transport of the transferrin receptor from sorting to recycling endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号