首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies of peptide dimers linked by Trp-Trp (ditryptophan) crosslinks suggest that the crosslinks can reinforce antiparallel beta-structure. Depending on environment, gramicidins A, B and C form either helical ion channels with parallel beta-structure or non-functional pores with antiparallel beta-structure. In the channel conformation of the gramicidins Trp9 and Trp15 are close in space, but in the pore conformation Trp9 and Trp15 are far apart. We hypothesized that a ditryptophan crosslink between Trp9 and Trp15 could pre-organize gramicidin in an active conformation. To test the potential for preorganization, an intramolecular ditryptophan crosslink was formed between Trp9 and Trp15 in a W13F mutant of gramicidin B. Photooxidative conditions were shown to generate ditryptophan crosslinks in low yields. While not preparatively useful, photooxidative tryptophan crosslinking may have implications for protein aging processes like cataract formation. The ditryptophan crosslink in the gramicidin B mutant substantially lowered the antibiotic activity of the gramicidin B mutant, unlike the ditryptophan crosslink in the antibiotic X-indolicidin. The biaryl chromophore generated diagnostic Cotton effects in the CD spectrum that revealed the absolute stereochemistry of the biaryl chromophore, but the biaryl chromophore obscured diagnostic features below 220 nm. However, changes in peptide conformation were reflected in changes in the biaryl region of the CD spectrum above 240 nm.  相似文献   

2.
The pore dimensions of gramicidin A.   总被引:28,自引:13,他引:15  
The ion channel forming peptide gramicidin A adopts a number of distinct conformations in different environments. We have developed a new method to analyze and display the pore dimensions of ion channels. The procedure is applied to two x-ray crystal structures of gramicidin that adopt distinct antiparallel double helical dimer conformations and a nuclear magnetic resonance (NMR) structure for the beta6.3 NH2-terminal to NH2-terminal dimer. The results are discussed with reference to ion conductance properties and dependence of pore dimensions on the environment.  相似文献   

3.
Qi X  Hong L  Zhang Y 《Biophysical journal》2012,102(3):597-605
Many human neurodegenerative diseases are associated with the aggregation of insoluble amyloid-like fibrous proteins. However, the processes by which the randomly diffused monomer peptides aggregate into the highly regulated amyloid fibril structures are largely unknown. We proposed a residue-level coarse-grained variational model for the investigation of the aggregation pathway for a small assembly of amyloid proteins, the peptide GNNQQNY from yeast prion protein Sup35. By examining the free energy surface, we identified the residue-level sequential pathways for double parallel and antiparallel β-peptides, which show that the central dry polar zipper structure is the major folding core in both cases. The critical nucleus size is determined to be three peptides for the homogeneous nucleation process, whereas the zig-zag growth pattern appears most favorably for heterogeneous nucleation. Consistent with the dock-and-lock mechanism, the aggregation process of free peptides to the fibril core was found to be highly cooperative. The quantitative validation with the computational simulations and experimental data demonstrated the usefulness of the proposed model in understanding the general mechanism of the amyloid fibril system.  相似文献   

4.
Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington’s disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases.  相似文献   

5.
D A Langs 《Biopolymers》1989,28(1):259-266
The crystal structure of the uncomplexed orthorhombic form of gramicidin A has been determined at 0.86 A resolution. The polypeptide crystallizes from ethanol as a left-handed, double-stranded, antiparallel beta 5.6-helical dimer that is 31 A long and an average of 4.8 A in diameter. The uncomplexed channel does not contain ions or solvent molecules, and its diameter is not uniform but varies from a minimum of 3.85 A to a maximum of 5.47 A. There are three empty cavities in the channel that have a diameter exceeding 5.25 A and appear to be large enough to accommodate water molecules or potassium ions in a chemically reasonable coordination environment. The observed crystal structure does not offer any obvious clues as to why an antiparallel beta 5.6-helix cannot function as an ion channel in lipid bilayers.  相似文献   

6.
《Biophysical journal》2020,118(10):2526-2536
Several atomic structures have now been found for micrometer-scale amyloid fibrils or elongated microcrystals using a range of methods, including NMR, electron microscopy, and X-ray crystallography, with parallel β-sheet appearing as the most common secondary structure. The etiology of amyloid disease, however, indicates nanometer-scale assemblies of only tens of peptides as significant agents of cytotoxicity and contagion. By combining solution X-ray with molecular dynamics, we show that antiparallel structure dominates at the first stages of aggregation for a specific set of peptides, being replaced by parallel at large length scales only. This divergence in structure between small and large amyloid aggregates should inform future design of molecular therapeutics against nucleation or intercellular transmission of amyloid. Calculations and an overview from the literature argue that antiparallel order should be the first appearance of structure in many or most amyloid aggregation processes, regardless of the endpoint. Exceptions to this finding should exist, depending inevitably on the sequence and on solution conditions.  相似文献   

7.
The role of the tryptophan-residues in gramicidin-induced HII phase formation was investigated in dioleoylphosphatidylcholine (DOPC) model membranes. 31P-NMR and small angle X-ray diffraction measurements showed, that gramicidin A and C (in which tryptophan-11 is replaced by tyrosine) induce a similar extent of HII phase formation, whereas for gramicidin B and synthetic analogs in which one tryptophan, either at position 9 or 11 is replaced by phenylalanine, a dramatic decrease of the HII phase inducing activity can be observed. Modification of all four tryptophans by means of formylation of the indole NH group leads to a complete block of HII phase formation. Sucrose density centrifugation experiments on the various peptide/lipid samples showed a quantitative incorporation of the peptide into the lipid. For all samples in a 1/10 molar ratio of peptide to lipid distinct bands were found, indicative of a phase separation. For the gramicidin A'/DOPC mixture these bands were analyzed and the macroscopic organization was determined by 31P-NMR and small-angle X-ray diffraction. The results demonstrate that a quantitative phase separation had occurred between a lamellar phase with a gramicidin/lipid ratio of 1/15 and a hexagonal HII phase, which is highly enriched in gramicidin. A study on the hydration properties of tryptophan-N-formylated gramicidin in mixtures with DOPC showed that this analog has a similar dehydrating effect on the lipid headgroup as the unmodified gramicidin. In addition both the hydration study and sucrose density centrifugation experiments showed that, like gramicidin also its analogs have a tendency to aggregate, but with differences in aggregation behaviour which seemed related to their HII phase inducing activity. It is proposed that the main driving force for HII phase formation is the tendency of gramicidin molecules to self-associate and organize into tubular structures such as found in the HII phase and that whether gramicidin (analogs) form these or other types of aggregates depends on their tertiary structure, which is determined by intra- as well as intermolecular aromatic-aromatic stacking interactions.  相似文献   

8.
Efficient determination of three-dimensional protein structures is critical for unraveling structure-function relationships and for supporting targeted drug design. A major impediment to these efforts is our lack of control over the nucleation and growth of high-quality protein crystals for X-ray structure determinations. While basic research on protein crystal growth mechanisms has provided valuable new insights, studies of crystal nucleation have been plagued by inconsistent and outright contradictory results. Using dynamic light scattering and SDS gel electrophoresis, we have investigated possible causes of these inconsistencies. We find that commercial sources of lyophilized hen-egg white lysozyme (HEWL) used in nucleation studies contain significant populations of large (approximately 100 nm), pre-assembled lysozyme clusters that can readily evade standard assays of sample purity. In supersaturated solutions, these clusters act as heterogeneous nucleation centers that enhance the rate of crystal nucleation and significantly deteriorate the quality of macroscopic crystals.  相似文献   

9.
Chen Y  Wallace BA 《Biopolymers》1997,42(7):771-781
Solvent effects on the far-uv CD spectra of the polypeptide gramicidin have been studied systematically in a series of alcohols of increasing chain length, ranging from methanol to dodecanol. The effects observed are of two types: primary, involving a change in the equilibrium mixture of conformers present, and secondary, involving a shift in the spectral peak positions as a function of solvent polarizability. To quantitate the primary effect, the ratio of the individual conformers present was estimated by deconvolution of the spectra into their component species. For short chain length alcohols, both parallel and antiparallel double helices are found in considerable abundance. As the solvent chain length is increased and its polarity is decreased, the left-handed antiparallel double helical species is favored. For all alcohols with chain lengths of four or more carbon atoms, the ratio of the conformers present remains relatively constant. To quantitatively examine the secondary effect, the magnitudes of the spectral shifts on the dominant conformer (species 3) have been correlated with the dielectric constants and refractive indices of the solvents, thereby indicating what underlying physical properties are responsible for these shifts. This work thus demonstrates that for gramicidin, a flexible polypeptide, the solvent effects on the CD spectra can be resolved into two types: changes due to the mixture of conformers present and shifts in the spectral characteristics. Both effects need to be considered when interpreting CD spectra in terms of secondary structure for this and other polypeptides in nonaqueous solutions.  相似文献   

10.
Ataxin-1 is a human protein responsible for spinocerebellar ataxia type 1, a hereditary disease associated with protein aggregation and misfolding. Essential for ataxin-1 aggregation is the anomalous expansion of a polyglutamine tract near the protein N-terminus, but the sequence-wise distant AXH domain modulates and contributes to the process. The AXH domain is also involved in the nonpathologic functions of the protein, including a variety of intermolecular interactions with other cellular partners. The domain forms a globular dimer in solution and displays a dimer of dimers arrangement in the crystal asymmetric unit. Here, we have characterized the domain further by studying its behavior in the crystal and in solution. We solved two new structures of the domain crystallized under different conditions that confirm an inherent plasticity of the AXH fold. In solution, the domain is present as a complex equilibrium mixture of monomeric, dimeric, and higher molecular weight species. This behavior, together with the tendency of the AXH fold to be trapped in local conformations, and the multiplicity of protomer interfaces, makes the AXH domain an unusual example of a chameleon protein whose properties bear potential relevance for the aggregation properties of ataxin-1 and thus for disease.  相似文献   

11.
Gallagher GJ  Hong M  Thompson LK 《Biochemistry》2004,43(24):7899-7906
A recently developed solid-state NMR method for measurement of depths in membrane systems is applied to gramicidin A, a membrane-bound peptide of known structure, to investigate the potential of this method. (15)N-detected, (1)H spin diffusion experiments demonstrate the resolution of the technique by measuring the 4-5 A depth differences between three (15)N-labeled backbone sites (Trp13, Val7, Gly2) in gramicidin A. We also show that (13)C-detected, (1)H spin diffusion experiments on unlabeled gramicidin A are sufficient to discriminate between the end-to-end dimer and double-helix structures of gramicidin A. Thus, spin diffusion solid-state NMR experiments can provide a simple approach, which does not require labeled samples, for testing structural models of membrane-bound peptides.  相似文献   

12.
The effects of binding calcium ions to the double helical forms of gramicidin present in methanol solution were examined using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. It was found that calcium ions principally alter the relative composition of the equilibrium mixture of gramicidin conformers present in the solvent. In the absence of calcium, both parallel and antiparallel double helices are present. However, the addition of small amounts of Ca2+ shifts the equilibrium towards the left-handed parallel double helical form. This conformational change prevents monovalent cations (caesiums) from binding to the gramicidin double helix, and even converts the shorter, wider anti-parallel double helical form normally produced in the presence of caesium into the longer, narrower parallel double helical form. Furthermore, a temperature study showed that calcium ions tend to stabilize this form relative to the ion-free forms. The conformation of gramicidin is further changed, becoming a disordered structure, when the concentration of Ca2+ is raised. Thus, the binding of divalent calcium ions has a number of dramatic effects on the conformations of gramicidin present in solution.  相似文献   

13.
All actin crystal structures reported to date represent actin complexed or chemically modified with molecules that prevent its polymerization. Actin cleaved with ECP32 protease at a single site between Gly42 and Val43 is virtually non-polymerizable in the Ca-ATP bound form but remains polymerization-competent in the Mg-bound form. Here, a crystal structure of the true uncomplexed ECP32-cleaved actin (ECP-actin) solved to 1.9 A resolution is reported. In contrast to the much more open conformation of the ECP-actin's nucleotide binding cleft in solution, the crystal structure of uncomplexed ECP-actin contains actin in a typical closed conformation similar to the complexed actin structures. This unambiguously demonstrates that the overall structure of monomeric actin is not significantly affected by a multitude of actin-binding proteins and toxins. The invariance of actin crystal structures suggests that the salt and precipitants necessary for crystallization stabilize actin in only one of its possible conformations. The asymmetric unit cell contains a new type of antiparallel actin dimer that may correspond to the "lower dimer" implicated in F-actin nucleation and branching. In addition, symmetry-related actin-actin contacts form a head to tail dimer that is strikingly similar to the longitudinal dimer predicted by the Holmes F-actin model, including a rotation of the monomers relative to each other not observed previously in actin crystal structures.  相似文献   

14.
The gramicidin ion channel: a model membrane protein   总被引:3,自引:0,他引:3  
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

15.
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

16.
The lateral membrane organization and phase behavior of the binary lipid mixture DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) - DSPC (1,2-distearoyl-sn-glycero-3-phosphatidylcholine) without and with incorporated gramicidin D (GD) as a model biomembrane polypeptide was studied by small-angle neutron scattering, Fourier-transform infrared spectroscopy, and by two-photon excitation fluorescence microscopy on giant unilamellar vesicles. The small-angle neutron scattering method allows the detection of concentration fluctuations in the range from 1 to 200 nm. Fluorescence microscopy was used for direct visualization of the lateral lipid organization and domain shapes on a micrometer length scale including information of the lipid phase state. In the fluid-gel coexistence region of the pure binary lipid system, large-scale concentration fluctuations appear. Infrared spectral parameters were used to determine the peptide conformation adopted in the different lipid phases. The data show that the structure of the temperature-dependent lipid phases is significantly altered by the insertion of 2 to 5 mol% GD. At temperatures corresponding to the gel-fluid phase coexistence region the concentration fluctuations drastically decrease, and we observe domains in the giant unilamellar vesicles, which mainly disappear by the incorporation of 2 to 5 mol% GD. Further, the lipid matrix has the ability to modulate the conformation of the inserted polypeptide. The balance between double-helical and helical dimer structures of GD depends on the phospholipid chain length and phase state. A large hydrophobic mismatch, such as in gel phase one-component DSPC bilayers, leads to an increase in population of double-helical structures. Using an effective molecular sorting mechanism, a large hydrophobic mismatch can be avoided in the DMPC-DSPC lipid mixture, which leads to significant changes in the heterogeneous lipid structure and in polypeptide conformation.  相似文献   

17.
Jordan JB  Shobana S  Andersen OS  Hinton JF 《Biochemistry》2006,45(47):14012-14020
Tryptophan residues often are found at the lipid-aqueous interface region of membrane-spanning proteins, including ion channels, where they are thought to be important determinants of protein structure and function. To better understand how Trp residues modulate the function of membrane-spanning channels, we have examined the effects of Trp replacements on the structure and function of gramicidin A channels. Analogues of gramicidin A in which the Trp residues at positions 9, 11, 13, and 15 were sequentially replaced with Gly were synthesized, and the three-dimensional structure of each analogue was determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. Though Trp --> Gly substitutions destabilize the beta6.3-helical gA channel structure, it is possible to determine the structure of analogues with Trp --> Gly substitutions at positions 11, 13, and 15, but not for the analogue with the Trp --> Gly substitution at position 9. The Gly11-, Gly13-, and Gly15-gA analogues form channels that adopt a backbone fold identical to that of native gramicidin A, with only small changes in the side chain conformations of the unsubstituted residues. Single-channel current measurements show that the channel function and lifetime of the analogues are significantly affected by the Trp --> Gly replacements. The conductance variations appear to be caused by sequential removal of the Trp dipoles, which alter the ion-dipole interactions that modulate ion movement. The lifetime variations did not appear to follow a clear pattern.  相似文献   

18.
Beta-2 microglobulin (β2m) is the light chain of class I major histocompatibility complex (MHC-I). β2m is an intrinsically amyloidogenic protein that can assemble into amyloid fibrils in a concentration dependent manner. β2m is accumulated in serum of haemodialysed patients, and deposited in the skeletal joints, causing dialysis related amyloidosis. Recent reports suggested that the loop comprised between β2m strands D and E is crucial for protein stability and for β2m propensity to aggregate as cross-β structured fibrils. In particular, the role of Trp60 for β2m stability has been highlighted by showing that the Trp60 → Gly β2m mutant is more thermo-stable and less prone to aggregation than the wild type protein. On the contrary the Asp59 → Pro β2m mutant shows lower Tm and stronger tendency to fibril aggregation. To further analyse such properties, the Trp60 → Val β2m mutant has been expressed and purified; the propensity to fibrillar aggregation and the folding stability have been assessed, and the X-ray crystal structure determined to 1.8 Å resolution. The W60V mutant structural features are discussed, focusing on the roles of the DE loop and of residue 60 in relation to β2m structure and its amyloid aggregation trends.  相似文献   

19.
The rotational amplitude of gramicidin tryptophans was investigated as a function of temperature and viscosity in a variety of solvents using fluorescence spectroscopy. In 80% glycerol-ethanol, gramicidin behavior was similar to that of alpha helical globular proteins. In dioleoyl-phosphatidylcholine (DOPC) and egg-phosphatidylcholine bilayers, the rotational amplitude of the tryptophans remained constant from 5 degrees to 40 degrees C due to the large number of tryptophans participating in intermolecular aromatic ring stacking. In gel phase dimyristoyl-phosphatidylcholine (DMPC), the tryptophan rotations likewise do not respond to temperature and viscosity changes, presumably because of a combination of Trp 9 and 15 stacking and the high viscosity of the membrane. In fluid phase DMPC, stacking becomes disrupted as the temperature increases causing the change in tryptophan amplitude with temperature to be greater than allowed by the membrane. In n-octylglucoside micelles, ring interactions are also broken with heat. We conclude that membrane viscosity regulates both inter- and intramolecular gramicidin interactions but not in a straightforward manner.  相似文献   

20.
The crystal structures of the peptides, Boc-Leu-Trp-Val-OMe (1), Ac-Leu-Trp-Val-OMe (2a and 2b), Boc-Leu-Phe-Val-OMe (3), Ac-Leu-Phe-Val-OMe (4), and Boc-Ala-Aib-Leu-Trp-Val-OMe (5) have been determined by X-ray diffraction in order to explore the nature of interactions between aromatic rings, specifically the indole side chain of Trp residues. Peptide 1 adopts a type I beta-turn conformation stabilized by an intramolecular 4-->1 hydrogen bond. Molecules of 1 pack into helical columns stabilized by two intermolecular hydrogen bonds, Leu(1)NH...O(2)Trp(2) and IndoleNH...O(1)Leu(1). The superhelical columns further pack into the tetragonal space group P4(3) by means of a continuous network of indole-indole interactions. Peptide 2 crystallizes in two polymorphic forms, P2(1) (2a) and P2(1)2(1)2(1) (2b). In both forms, the peptide backbone is extended, with antiparallel beta-sheet association being observed in crystals. Extended strand conformations and antiparallel beta-sheet formation are also observed in the Phe-containing analogs, Boc-Leu-Phe-Val-OMe (3) and Ac-Leu-Phe-Val-OMe (4). Peptide 5 forms a short stretch of 3(10)-helix. Analysis of aromatic-aromatic and aromatic-amide interactions in the structures of peptides, 1, 2a, 2b are reported along with the examples of 14 Trp-containing peptides from the Cambridge Crystallographic Database. The results suggest that there is no dramatic preference for a preferred orientation of two proximal indole rings. In Trp-containing peptides specific orientations of the indole ring, with respect to the preceding and succeeding peptide units, appear to be preferred in beta-turns and extended structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号