首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

2.
The biochemical events and components responsible for ATP-dependent Ca(2+)-activated secretion remain to be identified. To simplify the molecular dissection of regulated secretion, we have resolved norepinephrine (NE) secretion from semi-intact PC12 cells into two kinetically distinct stages, each of which was studied separately to discern its molecular requirements. The first stage consisted of MgATP-dependent priming of the secretory apparatus in the absence of Ca2+. MgATP-dependent priming was readily reversible and inhibited by a broad range of protein kinase inhibitors. The second stage consisted of Ca(2+)-triggered exocytosis which, in contrast to priming, occurred in the absence of MgATP. Both priming and triggering were found to be dependent upon or stimulated by cytosolic proteins. The priming and triggering activities of cytosol were functionally distinct as indicated by differing thermolability. Furthermore, active components in cytosol resolved by gel filtration were found to support either priming or triggering, but not both. For both priming and triggering reactions, several peaks of activity were detected; one of each type of factor was partially purified from rat brain cytosol, and found to be enriched for stage-specific activity. Two partially purified factors exhibiting stage-specific activity, a approximately 20-kD priming factor and approximately 300-kD triggering factor, were able to support regulated secretion as effectively as crude cytosol when used sequentially in the partial reactions. Further characterization of stage-specific cytosolic factors should clarify the nature of MgATP- and Ca(2+)-dependent events in the regulated secretory pathway.  相似文献   

3.
Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine into protein linearly for at least 5 h with no discernible lag period. In contrast, protein secretion was only detectable after a lag of approximately 1 h, consistent with exocytotic secretion of proteins immediately after passage through the secretory pathway and package into secretory vesicles. The extent of protein secretion was unaffected by the phorbol ester PMA, 8-bromo-cAMP, or 8-bromo-cGMP but was doubled by the Ca2+ ionophore ionomycin. In a pulse-label protocol in which proteins were prelabeled for 1 h before a chase period, constitutive secretion was unaffected by depletion of cytosolic Ca2+ but ionomycin was found to give a twofold stimulation of the secretion of presynthesized protein in a Ca(2+)-dependent manner. Ionomycin was still able to stimulate protein secretion after constitutive secretion had terminated. These results suggest that lactating mammary cells possess both a Ca(2+)-independent constitutive pathway and a Ca(2+)-activated regulatory pathway for protein secretion. The same proteins were secreted by both pathways. No ultrastructural evidence for apocrine secretion was seen in response to ionomycin and so it appears that regulated casein release involves exocytosis. Ionomycin was unlikely to be acting by disassembling the cortical actin network since cytochalasin D did not mimic its effects on secretion. The regulated pathway may be controlled by Ca2+ acting at a late step such as exocytotic membrane fusion.  相似文献   

4.
Calcium sensors in regulated exocytosis   总被引:8,自引:0,他引:8  
Burgoyne RD  Morgan A 《Cell calcium》1998,24(5-6):367-376
Neurotransmitter release, hormone secretion and a variety of other secretory process are tightly regulated with exocytotic fusion of secretory vesicles being triggered by a rise in cytosolic Ca2+ concentration. A series of proteins that act as part of a conserved core machinery for vesicle docking and fusion throughout the cell have been identified. In regulated exocytosis this core machinery must be controlled by Ca(2+)-sensor proteins that allow rapid activation of the fusion process following elevation of cytosolic Ca2+ concentration. The properties of such Ca2+ sensors are known from physiological studies but their molecular identity remains to be unequivocally established. The multiple Ca(2+)-dependent steps in the exocytotic pathway suggest the likely involvement of several Ca(2+)-binding proteins with distinct properties. Functional evidence for the role of various Ca(2+)-binding proteins and their possible sites of action is accumulating but a definitive identification of the major Ca(2+)-sensor in the final step of Ca(2+)-triggered membrane fusion in different cell types awaits further analysis.  相似文献   

5.
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for multiple processes within the eukaryotic cell, including membrane transport and neurotransmitter secretion. How the V-ATPase is regulated, e.g. by an accessory subunit, remains elusive. Here we explored the role of the neuroendocrine V-ATPase accessory subunit Ac45 via its transgenic expression specifically in the Xenopus intermediate pituitary melanotrope cell model. The Ac45-transgene product did not affect the levels of the prohormone proopiomelanocortin nor of V-ATPase subunits, but rather caused an accumulation of the V-ATPase at the plasma membrane. Furthermore, a higher abundance of secretory granules, protrusions of the plasma membrane and an increased Ca(2+)-dependent secretion efficiency were observed in the Ac45-transgenic cells. We conclude that in neuroendocrine cells Ac45 guides the V-ATPase through the secretory pathway, thereby regulating the V-ATPase-mediated process of Ca(2+)-dependent peptide secretion.  相似文献   

6.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2+) activate the epithelial CaCCs, which provides an alternative Cl(-) secretory pathway in CF. We developed a screening assay and screened a library for compounds that could enhance cytoplasmic Ca2+, activate the CaCC, and increase Cl(-) secretion. We found that spiperone, a known antipsychotic drug, is a potent intracellular Ca2+ enhancer and demonstrated that it stimulates intracellular Ca2+, not by acting in its well-known role as an antagonist of serotonin 5-HT2 or dopamine D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Spiperone activates CaCCs, which stimulates Cl(-) secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro and in CFTR-knockout mice in vivo. In conclusion, we have identified spiperone as a new therapeutic platform for correction of defective Cl(-) secretion in CF via a pathway independent of CFTR.  相似文献   

7.
Ca2+ is a major regulator of exocytosis in secretory cells, however, the biochemical mechanisms underlying regulation remain to be identified. To render the secretory apparatus accessible for biochemical studies, we have developed a cell permeabilization method (cell cracking) which utilizes mechanical shear. GH3 pituitary cells subjected to cracking were permeable to macromolecules but retained a normal cytoplasmic ultrastructure including secretory granules. Incubation of the permeable cells at 30-37 degrees C with 0.1-1.0 microM Ca2+ and millimolar MgATP resulted in the release of the secretory proteins, prolactin (PRL) and a proteoglycan, but not lysosomal enzymes. Extensively washed permeable cells were incapable of releasing PRL in response to Ca2+ and MgATP addition. However, addition of cytosol was found to restore Ca2+-activated, MgATP-dependent PRL release. The cytosolic factor responsible for activity was thermolabile and protease sensitive. The protein was partially purified, and its molecular mass was estimated to be equivalent to that of a globular protein of 200-350 kDa by molecular sieve chromatography. Inhibitors of calmodulin or protein kinase C (trifluroperazine, calmidazolium, H-7) failed to inhibit Ca2+-activated PRL release, and the required cytosolic protein could not be replaced by purified calmodulin, calmodulin-dependent protein kinase II, protein kinase C, or calpactin I. Further purification and characterization of the cytosolic protein should reveal the nature of biochemical events involved in regulated secretory exocytosis.  相似文献   

8.
《The Journal of cell biology》1996,133(6):1217-1236
Annexin II is a Ca(2+)-dependent membrane-binding protein present in a wide variety of cells and tissues. Within cells, annexin II is found either as a 36-kD monomer (p36) or as a heterotetrameric complex (p90) coupled with the S-100-related protein, p11. Annexin II has been suggested to be involved in exocytosis as it can restore the secretory responsiveness of permeabilized chromaffin cells. By quantitative confocal immunofluorescence, immunoreplica analysis and immunoprecipitation, we show here the translocation of p36 from the cytosol to a subplasmalemmal Triton X-100 insoluble fraction in chromaffin cells following nicotinic stimulation. A synthetic peptide corresponding to the NH2-terminal domain of p36 which contains the phosphorylation sites was microinjected into individual chromaffin cells and catecholamine secretion was monitored by amperometry. This peptide blocked completely the nicotine-induced recruitment of p36 to the cell periphery and strongly inhibited exocytosis evoked by either nicotine or high K+. The light chain of annexin II, p11, was selectively expressed by adrenergic chromaffin cells, and was only present in the subplasmalemmal Triton X-100 insoluble protein fraction of both resting and stimulated cells. p11 can modify the Ca(2+)- and/or the phospholipid-binding properties of p36. We found that loss Ca2+ was required to stimulate the translocation of p36 and to trigger exocytosis in adrenergic chromaffin cells. Our findings suggest that the translocation of p36 to the subplasmalemmal region is an essential event in regulated exocytosis and support the idea that the presence of p11 in adrenergic cells may confer a higher Ca2+ affinity to the exocytotic pathway in these cells.  相似文献   

9.
Previous work (Gandino, L., Di Renzo, M. F., Giordano, S., Bussolino, F., and Comoglio, P.M. (1990) Oncogene 5, 721-725) has shown that the tyrosine kinase activity of the receptor encoded by the MET protooncogene is negatively modulated by protein kinase C (PKC). We now show that an increase of intracellular Ca2+ has a similar inhibitory effect in vivo, via a PKC-independent mechanism. In GTL-16 cells the p145MET kinase is overexpressed and constitutively phosphorylated on tyrosine. A rapid and reversible decrease of p145MET tyrosine phosphorylation was induced by treatment with the calcium ionophores A23187 or ionomycin. Experiments performed with the ionophores in absence of extracellular calcium showed that a rise in cytoplasmic Ca2+ concentration to 450 nM (due to release from intracellular stores) resulted in a similar effect. These Ca2+ concentrations had no effect on p145MET autophosphorylation in an in vitro kinase assay. This suggests that the effect of Ca2+ on p145MET tyrosine phosphorylation is not direct but may be mediated by Ca(2+)-activated proteins(s). Involvement of Ca(2+)-dependent tyrosine phosphatases was ruled out by experiments carried out in presence of Na2VO4. In vivo labeling with [32P]orthophosphate showed that the rise of intracellular Ca2+ induces serine phosphorylation of p145MET on a specific phosphopeptide. This suggests that Ca2+ negatively modulates p145MET kinase through the phosphorylation of a critical serine residue by a Ca(2+)-activated serine kinase distinct from PKC.  相似文献   

10.
Priming in exocytosis: attaining fusion-competence after vesicle docking   总被引:5,自引:0,他引:5  
Klenchin VA  Martin TF 《Biochimie》2000,82(5):399-407
Membrane contact established by tethering or docking mechanisms is not a sufficient condition for membrane fusion. In neural and neuroendocrine cells, only a small fraction of secretory vesicles docked at the plasma membrane are fusion-competent and undergo rapid ATP-independent fusion in response to Ca(2+) elevations. Additional biochemical events termed 'priming' are essential to render vesicles competent for Ca(2+)-triggered fusion. The priming of vesicles is ATP-dependent and a number of ATP-dependent priming reactions have been characterized in permeable neuroendocrine cells. These involve NSF-mediated priming of SNARE protein complexes, the ATP-dependent synthesis of phosphoinositides, and protein kinase-mediated protein phosphorylation. In addition, munc13 is an important protein involved in priming synaptic vesicles. An emphasis in this review is on recent work indicating that priming events identified in the pathways of regulated exocytosis share many features with pre-fusion processes characterized in constitutive fusion pathways.  相似文献   

11.
Divalent cation receptors have recently been identified in a wide variety of tissues and organs, yet their exact function remains controversial. We have previously identified a member of this receptor family in the stomach and have demonstrated that it is localized to the parietal cell, the acid secretory cell of the gastric gland. The activation of acid secretion has been classically defined as being regulated by two pathways: a neuronal pathway (mediated by acetylcholine) and an endocrine pathway (mediated by gastrin and histamine). Here, we identified a novel pathway modulating gastric acid secretion through the stomach calcium-sensing receptor (SCAR) located on the basolateral membrane of gastric parietal cells. Activation of SCAR in the intact rat gastric gland by divalent cations (Ca(2+) or Mg(2+)) or by the potent stimulator gadolinium (Gd(3+)) led to an increase in the rate of acid secretion through the apical H+,K+ -ATPase. Gd(3+) was able to activate acid secretion through the omeprazole-sensitive H+,K+ -ATPase even in the absence of the classical stimulator histamine. In contrast, inhibition of SCAR by reduction of extracellular cations abolished the stimulatory effect of histamine on gastric acid secretion, providing evidence for the regulation of the proton secretory transport protein by the receptor. These studies present the first example of a member of the divalent cation receptors modulating a plasma membrane transport protein and may lead to new insights into the regulation of gastric acid secretion.  相似文献   

12.
CRHSP-28 is a Ca(2+)-regulated heat-stable phosphoprotein, abundant in the apical cytoplasm of epithelial cells that are specialized in exocrine protein secretion. To define a functional role for the protein in pancreatic secretion, recombinant CRHSP-28 (rCRHSP-28) was introduced into streptolysin-O-permeabilized acinar cells, and amylase secretion in response to elevated Ca(2+) was determined. Secretion was enhanced markedly by rCRHSP-28 over a time course that closely corresponded with the loss of the native protein from the intracellular compartment. No effects of rCRHSP-28 were detected until approximately 50% of the native protein was lost from the cytosol. Secretion was enhanced by rCRHSP-28 over a physiological range of Ca(2+) concentrations with 2-3-fold increases in amylase release occurring in response to low micromolar levels of free Ca(2+). Further, rCRHSP-28 augmented secretion in a concentration-dependent manner with minimal and maximal effects occurring at 1 and 25 microg/ml, respectively. Covalent cross-linking experiments demonstrated that native CRHSP-28 was present in a 60-kDa complex in cytosolic fractions and in a high molecular mass complex in particulate fractions, consistent with the slow leak rate of the protein from streptolysin-O-permeabilized cells. Probing acinar lysates with rCRHSP-28 in a gel-overlay assay identified two CRHSP-28-binding proteins of 35 (pp35) and 70 kDa (pp70). Interestingly, preparation of lysates in the presence of 1 mm Ca(2+) resulted in a marked redistribution of both proteins from a cytosolic to a Triton X-100-insoluble fraction, suggesting a Ca(2+)-sensitive interaction of these proteins with the acinar cell cytoskeleton. In agreement with our previous study immunohistochemically localizing CRHSP-28 around secretory granules in acinar cells, gel-overlay analysis revealed pp70 copurified with acinar cell secretory granule membranes. These findings demonstrate an important cell physiological function for CRHSP-28 in the Ca(2+)-regulated secretory pathway of acinar cells.  相似文献   

13.
Bittner MA 《Biochimie》2000,82(5):447-452
Alpha-Latrotoxin and its plasma membrane receptors cause a number of distinct effects in secretory cells. First, by tethering alpha-latrotoxin to the plasma membrane, CIRL/latrophilin and neurexin 1 alpha facilitate alpha-latrotoxin-induced channel formation. The stimulation of secretion by alpha-latrotoxin in neuroendocrine cells is a consequence of Ca(2+) influx through these alpha-latrotoxin-induced channels. In addition to channel formation, alpha-latrotoxin enhances secretion in permeabilized cells through interaction with the plasma membrane receptor CIRL/latrophilin. Finally, overexpression of CIRL/latrophilin inhibits Ca(2+)-dependent secretion in permeabilized chromaffin cells in the absence of alpha-latrotoxin. This effect represents a 'constitutive' action of the G-protein coupled receptor to specifically inhibit an ATP-dependent priming step in the secretory pathway. The effect suggests that the receptor may have an important modulatory role in synaptic transmission.  相似文献   

14.
Calnuc is an ubiquitous, EF-hand Ca(2+) binding protein found in the cytoplasm where it binds to Galphai3, in the Golgi lumen where it constitutes a Ca(2+) storage pool, and secreted outside the cell. Here we investigated the pathway of secretion of calnuc in AtT20 cells. We found by pulse-chase experiments that calnuc is synthesized in the endoplasmic reticulum, transported to the Golgi where it remains greater than 12 h and undergoes posttranslational modification (O-glycosylation and sulfation) followed by secretion into the culture medium. We examined if calnuc is secreted by the constitutive or regulated secretory pathway in AtT20 cells. By immunofluorescence and immunogold labeling, endogenous calnuc is found in immature secretion granules (ISG) but not mature regulated secretory granules (RSG), whereas overexpressed calnuc-green fluorescent protein (GFP) is found in both ISG and RSG, where it colocalizes with ACTH. Neither calnuc nor calnuc-GFP are released by the regulated secretory pathway, suggesting that endogenous calnuc and calnuc-GFP are progressively removed from ISG and RSG during granule maturation. We conclude that calnuc is secreted via the constitutive-like pathway and represents a useful endogenous marker for this pathway in AtT20 cells. Together, these observations indicate that calnuc has a unique itinerary as it is retained in the Golgi and is then constitutively secreted extracellularly where it may influence cell behavior via its Ca(2+)-binding properties.  相似文献   

15.
Cl(-) channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. Although a cystic fibrosis transmembrane conductance regulator has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP](i), an alternate Cl(-) secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increasing [Ca(2+)](i). The molecular identity of this Ca(2+)-activated Cl(-) channel is unknown. The present studies in human, mouse, and rat BECs provide evidence that TMEM16A is the operative channel and contributes to Ca(2+)-activated Cl(-) secretion in response to extracellular nucleotides. Furthermore, Cl(-) currents measured from BECs isolated from distinct areas of intrahepatic bile ducts revealed important functional differences. Large BECs, but not small BECs, exhibit cAMP-stimulated Cl(-) currents. However, both large and small BECs express TMEM16A and exhibit Ca(2+)-activated Cl(-) efflux in response to extracellular nucleotides. Incubation of polarized BEC monolayers with IL-4 increased TMEM16A protein expression, membrane localization, and transepithelial secretion (I(sc)). These studies represent the first molecular identification of an alternate, noncystic fibrosis transmembrane conductance regulator, Cl(-) channel in BECs and suggest that TMEM16A may be a potential target to modulate bile formation in the treatment of cholestatic liver disorders.  相似文献   

16.
Although CAPS1 was originally identified as a soluble factor that reconstitutes Ca(2+)-dependent secretion from permeabilized neuroendocrine cells, its exact function in intact mammalian cells remains controversial. Here we investigate the role for CAPS1 by generating stable cell lines in which CAPS1 is strongly down-regulated. In these cells, Ca(2+)-dependent secretion was strongly reduced not only of catecholamine but also of a transfected neuropeptide. These secretion defects were rescued by infusion of CAPS1-containing brain cytosol or by transfection-mediated expression of CAPS1. Whole cell patch clamp recording revealed significant reductions in slow burst and sustained release components of exocytosis in the knockdown cells. Unexpectedly, they also accumulated higher amounts of endogenous and exogenous transmitters, which were attributable to reductions in constitutive secretion. Electron microscopy did not reveal abnormalities in the number or docking of dense core vesicles. Our results indicate that CAPS1 plays critical roles not only in Ca(2+)-dependent, regulated exocytosis but also in constitutive exocytosis downstream of vesicle docking. However, they do not support the role for CAPS1 in loading transmitters into dense core vesicles.  相似文献   

17.
PIKfyve negatively regulates exocytosis in neurosecretory cells   总被引:2,自引:0,他引:2  
Regulated secretion depends upon a highly coordinated series of protein-protein and protein-lipid interactions. Two phosphoinositides, phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3-phosphate, are important for the ATP-dependent priming of the secretory apparatus prior to Ca(2+)-dependent exocytosis. Mechanisms that control phosphoinositide levels are likely to play an important role in priming fine tuning. Here we have investigated the involvement of PIKfyve, a phosphoinositide 5-kinase that can phosphorylate phosphatidylinositol 3-phosphate to produce phosphatidylinositol 3,5-bisphosphate on large dense core vesicle exocytosis from neuroendocrine cells. PIKfyve localizes to a subpopulation of secretory granules in chromaffin and PC12 cells. Nicotine stimulation promoted recruitment of PIKfyve-EGFP onto secretory vesicles in PC12 cells. YM-201636, a selective inhibitor of PIKfyve activity, and PIKfyve knockdown by small interfering RNA potentiated secretory granule exocytosis. Overexpression of PIKfyve or its yeast orthologue Fab1p inhibited regulated secretion in PC12 cells, whereas a catalytically inactive PIKfyve mutant had no effect. These results demonstrate a novel inhibitory role for PIKfyve catalytic activity in regulated secretion and provide further evidence for a fine tuning of exocytosis by 3-phosphorylated phosphoinositides.  相似文献   

18.
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.  相似文献   

19.
Guanosine triphosphate (GTP) has been implicated in the regulation of Ca(2+)-mediated secretion from neutrophils. We further examined the role of GTP in neutrophil secretion using streptolysin O permeabilized cells. We found that, in the presence of GTP, 1.0 microM free Ca(2+) causes maximum secretion-equivalent to that achieved with 100 microM free Ca(2+)-whereas GTPgammaS inhibits Ca(2+)-stimulated secretion. Interestingly, GTP by itself stimulates secretion. These results indicate the existence of a GTP-regulated mechanism of secretion in neutrophils that requires GTP hydrolysis to stimulate secretion in the presence and absence of Ca(2+). The stimulatory effect of GTP is only observed when GTP is present during permeabilization. Addition of GTP after permeabilization, when the cytosolic contents have leaked out from cells, gives no stimulatory response, implying that the GTP-dependent secretory apparatus requires at least one cytosolic protein. GTP-dependent secretion can be reconstituted with crude HL-60 and bovine liver cytosol. The reconstituting activity binds to GTP-agarose, suggesting that the cytosolic factor is a GTP-binding protein or forms a complex with a GTP-binding protein. However, it is not a member of the rho or rac families of GTPases. By gel filtration chromatography, the secretion-reconstituting activity eluted at 870 and 200 kDa, but in the presence of GTP, eluted at 120 kDa, indicating that it is part of a high-molecular-weight complex that dissociates in the presence of GTP. Retention of adenosine diphosphate-ribosylation factor (ARF) in permeabilized cells and insensitivity of the cytosolic reconstituting activity to brefeldin A led to our speculation that ARF6 may be the GTPase involved in GTP-dependent secretion, and that activity from a BFA-insensitive ARF6 guanine nucleotide exchange factor reconstitutes secretion.  相似文献   

20.
Rab proteins comprise a complex family of small GTPases involved in the regulation of intracellular membrane trafficking and reorganization. In this study, we identified Rab18 as a new inhibitory player of the secretory pathway in neuroendocrine cells. In adrenal chromaffin PC12 cells and pituitary AtT20 cells, Rab18 is located at the cytosol but associates with a subpopulation of secretory granules after stimulation of the regulated secretory pathway, strongly suggesting that induction of secretion provokes Rab18 activation and recruitment to these organelles. In support of this, a dominant-inactive Rab18 mutant was found to distribute diffusely in the cytosol, whereas a dominant-active Rab18 mutant was predominantly associated to secretory granules. Furthermore, interaction of Rab18 with secretory granules was associated to an inhibition in the secretory activity of PC12 and AtT20 cells in response to stimulatory challenges. Association of Rab18 with secretory granules was also observed by immunoelectron microscopy in normal, non-tumoral endocrine cells (pituitary melanotropes), wherein Rab18 protein content is inversely correlated to the level of secretory activity of cells. Taken together, these findings suggest that, in neuroendocrine cells, Rab18 acts as a negative regulator of secretory activity, likely by impairing secretory granule transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号