首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extracellular serine peptidase, purified from the culture supernatant of the sub-Arctic psychrophilic bacterium strain PA-43, is monomeric, with a relative molecular mass of 76000, and an unusually low pI of 3.8. The peptidase is active towards N-succinyl AAPF p-nitroanilide and N-succinyl AAPL p-nitroanilide, indicating a chymotrypsin-like substrate specificity. It is inhibited by the serine peptidase inactivator phenylmethylsulfonyl fluoride, but not by EDTA or EGTA, suggesting that added metal ions are not necessary for activity. The enzyme is most active at pH 8.3 and at 55-60 degrees C, although it is unstable at 60 degrees C. It is nevertheless remarkably stable for an enzyme from a psychrophilic microorganism, remaining active after 1 week at 20 degrees C and after five freeze-thaw cycles. Comparison of the N-terminal 40 amino acid residues with other archived sequences revealed highest similarity to the alkaline serine protease (aprx) from Bacillus subtilis.  相似文献   

2.
Summary. Spinach leaves were used to extract isoforms of NAD-dependent malate dehydrogenase (NAD-MDH) (EC 1.1.1.37), either soluble or bound to microsomal, plasma, or chloroplast envelope membranes. All fractions were subjected to isoelectric focusing analysis, which showed that purified chloroplast envelopes contain an NAD-MDH isoform tightly bound to the membranes, since treatment with 0.5 or 1% Triton X-100 was not able to release the enzyme from the envelopes. In contrast, plasma membranes released an isoform with a pI of 3.5 following treatment with 0.5% Triton X-100. The most abundant soluble leaf isoform had a pI of 9, while the chloroplast stroma contained an isoform with a pI of 5.3. Kinetic analysis of oxaloacetate (OAA)-dependent NADH oxidation in different fractions gave different K m values for both substrates, the envelope- and plasma membrane-bound NAD-MDH exhibiting the highest affinities for OAA. Leaf plasma membrane-bound MDH exhibited a high capacity for both reaction directions (malate oxidation and OAA reduction), while the two chloroplast isoforms (stromal and envelope-bound) preferentially reduced OAA. Our results indicate that the chloroplast envelope contains a specifically attached NAD-MDH isoform that could provide direct coupling between chloroplast and cytosol adenylate pools. Correspondence: T. Cvetić, Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia.  相似文献   

3.
苹果酸脱氢酶的结构及功能   总被引:7,自引:0,他引:7  
苹果酸脱氢酶(MDH)可以催化苹果酸与草酰乙酸间的可逆转换,主要参与TCA循环、光合作用、C4循环等代谢途径。苹果酸脱氢酶可分为NAD-依赖性的MDFI(NAD—MDH)和NADP-依赖性的MDH(NADP—MDH)。在所有真核生物和大部分细菌中,MDH通常形成同源二聚体,在少数细菌中为四聚体。不同来源的MDH催化机制和它们的动力学性质十分类似,显示了它们具有高度的结构相似性。MDH的功能多样,包括线粒体中的能量提供和植物的活性氧代谢等。回顾了苹果酸脱氢酶在生理学、医学、农学领域的研究进展,并针对其生化特性、空间结构特点、催化机理等生物学功能的分子生物学进展进行了综述。  相似文献   

4.
Glutathione (GSH) biosynthesis occurs through two ATP-dependent reactions, usually involving distinct enzymes; in the second step of this process, catalysed by glutathione synthetase (GshB), GSH is formed from γ-glutamylcysteine and glycine. A recombinant form of GshB from the cold-adapted source Pseudoalteromonas haloplanktis (rPhGshB) was purified and characterised. The enzyme formed a disulfide adduct with β-mercaptoethanol, when purified in the presence of this reducing agent. The homotetrameric form of rPhGshB observed at high protein concentration disassembled into two homodimers at low concentration. A new method for directly determining the rPhGshB activity was developed, based on [γ-(32)P]ATP hydrolysis coupled to the GSH synthesis. The ATPase activity required the presence of both γ-glutamylcysteine and glycine and its optimum was reached in the 7.4-8.6 pH range; a divalent cation was absolutely required for the activity, whereas monovalent cations were dispensable. rPhGshB was active at low temperatures and had a similar affinity for ATP (K(m) 0.26 mM) and γ-glutamylcysteine (K(m) 0.25 mM); a lower affinity was measured for glycine (K(m) 0.75 mM). The oxidised form of glutathione (GSSG) acted as an irreversible inhibitor of rPhGshB (K(i) 10.7 mM) and formed disulfide adducts with the enzyme. rPhGshB displayed a great temperature-dependent increase in its activity with an unusually high value of energy of activation (75 kJ mol(-1)) for a psychrophilic enzyme. The enzyme was moderately thermostable, its half inactivation temperature being 50.5 °C after 10 min exposure. The energy of activation of the heat inactivation process was 208 kJ mol(-1). To our knowledge, this is the first contribution to the characterization of a GshB from cold-adapted sources.  相似文献   

5.
Malate dehydrogenases from Streptosporangium roseum (DSM 43021), Planomonospora venezuelensis (DSM 43178), Microtetraspora glauca (ATCC 23057), Actinoplanes missouriensis (DSM 43046), Streptomyces atratus (ATCC 14046), Kibdelosporangium aridum (ATCC 39323), and from Phenylobacterium immobile, strain E (DSM 1986) were purified to homogeneity. The N-terminal amino-acid sequences were determined and compared with known prokaryotic and eukaryotic sequence data. The partial sequences from Actinomycetales enzymes include a string of amino acids which is also present in the N-terminal region of malate dehydrogenases from Thermus flavus and from mammalian cytoplasm.  相似文献   

6.
7.
A rapid method for the quantitative purification of bacterial malate dehydrogenases (EC 1.1.1.37) has been developed. These enzymes adsorb weakly at low ionic strength to either 5′-AMP or Cibacron blue F3GA agarose derivatives. Sequential elution from these columns first with KC1 then NAD results in complete purification of enzymes fromEscherichia coli andSalmonella typhimurium and nearly complete purification from three other bacteria tried. All the enzymes with exception of aCitrobacter enzyme were immunologically cross-reactive.  相似文献   

8.
9.
The gene encoding alanine dehydrogenase (AlaDH; EC 1.4.1.1) from the marine psychrophilic bacterium strain PA-43 was cloned, sequenced, and overexpressed in Escherichia coli. The primary structure was deduced on the basis of the nucleotide sequence. The enzyme subunit contains 371 amino acid residues, and the sequence is 90% and 77% identical, respectively, to AlaDHs from Shewanella Ac10 and Vibrio proteolyticus. The half-life of PA-43 AlaDH at 52 degrees C is 9 min, and it is thus more thermolabile than the AlaDH from Shewanella Ac10 or V. proteolyticus. The enzyme showed strong specificity for NAD(+) and l-alanine as substrates. The apparent K(m) for NAD(+) was temperature dependent (0.04 mM-0.23 mM from 15 degrees C to 55 degrees C). A comparison of the PA-43 deduced amino acid sequence to the solved three-dimensional structure of Phormidium lapideum AlaDH showed that there were likely to be fewer salt bridges in the PA-43 enzyme, which would increase enzyme flexibility and decrease thermostability. The hydrophobic surface character of the PA-43 enzyme was greater than that of P. lapideum AlaDH, by six residues. However, no particular modification or suite of modifications emerged as being clearly responsible for the psychrophilic character of PA-43 AlaDH.  相似文献   

10.
Abstract The accumulation of ppGpp in three streptococci starved for isoleucine was studied via HPLC analysis of cell extracts prepared from mechanically disrupted bacteria. Starvation was achieved either by reduction of isoleucine in the growth medium or the addition of pseudomonic acid. The results indicate that while both treatments produced a physiological response similar to that described for stringent strains of other bacteria, in the streptococci, stringency was not necessarily coupled with ppGpp.  相似文献   

11.
The thermostability in vitro of dimeric and tetrameric malate dehydrogenases [S)-malate:NAD+ oxidoreductase, EC 1.1.1.37) from mesophilic and thermophilic bacteria shows a good correlation to the growth temperature of the source organism but no consistent relationship to enzyme subunit structure. The thermophile malate dehydrogenases are, in general, more resistant to the surfactants, sodium dodecyl sulphate (SDS) and hexadecyltrimethylammonium bromide, and to the denaturants, guanidinium chloride and urea, than their mesophilic counterparts, with the dimer in each thermal class being more resistant to the chemical perturbants than the tetramer. Sedimentation analysis suggests that denaturation of the malate dehydrogenases by acid-periodate or SDS produces discrete subunits, whereas denaturation by guanidinium chloride followed by carboxymethylation yields ill-defined protein species. SDS and acid-periodate were therefore preferred to generate denatured malate dehydrogenases for use as immunogens and antigens. The native malate dehydrogenases exhibit immunological cross-reactivity only when they are in the same oligomeric form and derived from closely related species, which may, however, be from different thermal classes. Taking immunological cross-reactivity as an indicator of structural similarity, this supports the idea that the thermophilic trait evolved independently within each phyletic line. With denatured malate dehydrogenases as immunogens and antigens, cross-reactivity is manifested between all the malate dehydrogenases examined. This suggests that appreciable primary structural homology exists between the malate dehydrogenases, whether dimeric or tetrameric, from thermophiles and mesophiles and from various taxa.  相似文献   

12.
13.
We have cloned and sequenced a lactate dehydrogenase (LDH) gene from Cryptosporidium parvum (CpLDH1). With this addition, and that of four recently deposited alpha-proteobacterial malate dehydrogenase (MDH) genes, the phylogenetic relationships among apicomplexan LDH and bacterial MDH were re-examined. Consistent with previous studies, our maximum likelihood (ML) analysis using the quartet-puzzling method divided 105 LDH/MDH enzymes into five clades, and confirmed that mitochondrial MDH is a sister clade to those of y-proteobacteria, rather than to alpha-proteobacteria. In addition, a Cryptosporidium parvum MDH (CpMDH1) was identified from the ongoing Cryptosporidium genome project that appears to belong to a distinct clade (III) comprised of 22 sequences from one archaebacterium, numerous eubacteria, and several apicomplexans. Using the ML puzzling test and bootstrapping analysis with protein distance and parsimony methods, the resulting trees not only robustly confirmed the alpha-proteobacterial relationship of apicomplexan LDH/MDH, but also supported a monophyletic relationship of CpLDH1 with CpMDHI. These data suggest that, unlike most other eukaryotes, the Apicomplexa may be one of the few lineages retaining an alpha-proteobacterial-type MDH that could have been acquired from an ancestral alpha-proteobacterium through primary endosymbiosis giving rise to the mitochondria, or through an unknown lateral gene transfer (LGT) event.  相似文献   

14.
Since the malate-aspartate shuttle in brain has been shown to be closely linked to brain energy metabolism and neurotransmitter synthesis, the activity of MDH, one of the enzymes of the malateaspartate shuttle, was studied in cortical non-synaptic mitochondria (mMDH) and cytosol (cMDH) in 1–4 day, 18–20 day and 7–8 week old rats. The mean mMDH activity (nmol/min/mg protein) was 10,517±734 (mean±SEM), 8,882±241 and 10,323±561 and cMDH activity was 2,453±99, 4,673±152 and 6,821±205 in 1–4 day, 18–20 day and 7–8 week old rats, respectively. While cMDH activity increased with age (p<0.0001), mMDH activity showed no change. This study also determined if endogenous compounds, previously shown to alter malate metabolism, affected MDH activities. Lactate inhibited only cMDH activity, by a competitive mechanism. Oxaloacetate inhibited mMDH by partial non-competitive inhibition and cMDH by competitive inhibition. Alpha-ketoglutarate competitively inhibited both enzymes; however, the inhibition of mMDH activity was more pronounced than that of cMDH activity. Citrate inhibited mMDH via an uncompetitive mechanism and cMDH via a noncompetitive mechanism. The mechanisms of inhibition of mMDH and cMDH by each of the effectors were the same over the three ages. The results suggest mMDH and cMDH activities show a dissimilar developmental pattern and may be regulated differently by endogenous effectors. The greater sensitivity of mMDH, compared to cMDH, to certain effectors may be related to the dual role of mMDH in the tricarboxylic acid cycle and the malate-aspartate shuttle.These data were presented in part at the meeting of the Federation of American Societies for Experimental Biology in Atlanta, Georgia, April 1991. This work was performed in partial fulfillment of the requirements for the M.S. Degree in Nutritional Sciences (P.M.)  相似文献   

15.
16.
Comparative analysis of malate dehydrogenases of Drosophila melanogaster   总被引:4,自引:0,他引:4  
The malate dehydrogenases of D. melanogaster have been resolved into a cytoplasmic form (cMDH) and a mitochondrial matrix form (mMDH). Flies homozygous for allozyme variants exhibit isozymes of cMDH detected by starch gel electrophoresis and acrylamide gel isoelectric focusing. The basis of these isozymes was investigated, and the results suggest either conformational or epigenetic modification of isozymes. The probable structural gene for cMDH (Mdh-1) has been mapped genetically by allozyme variants to II-35 ± 3 and cytologically by monitoring gene dosage in segmental aneuploids to between 28D and 29F on II-L of the Drosophila salivary gland chromosome map. The structural gene for mMDH is neither identical to nor in the near chromosomal proximity of Mdh-1. Nevertheless, the two enzymes exhibit markedly similar properties with respect to (1) catalytic activity, (2) pH optima, (3) pH optimum shift in response to different ionic environments, and (4) molecular weight as determined by sucrose density gradient sedimentation.This project was supported by NIH postdoctoral research fellowship No. 6-FO2-GM-49, 633-01 from the National Institute of General Medical Sciences.  相似文献   

17.
18.
The gene encoding malate dehydrogenase (MDH) of the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 was cloned and sequenced. There were two positions [close to the active site (Ala-180) and in the subunit interaction site (His-229)] with 2D2-specific substitutions. The MDH genes of strain 2D2 and a psychrophilic bacterium Moritella sp. strain 5710 exhibiting the highest sequence similarity were overexpressed in Escherichia coli. The 2D2 MDH was more heat-stable than the 5710 MDH. The apparent Km value at 62.1 MPa for NADH of the 2D2 MDH was higher than that of the 5710 MDH. The 2D2 MDH in which a His-Gln substitution was introduced at position 229 decreased the thermal stability and Km value at 62.1 MPa. The 5710 MDH that was substituted Gln-229 with His increased the thermal stability and Km value at 62.1 MPa. These results indicate that the His residue at position 229 of the 2D2 MDH may play a role in the thermal stability and the MDH function at high pressure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号