首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitrate reductase is one of the most important enzymes in the assimilation of exogenous nitrate—the predominant form of nitrogen available to green plants growing in soil. Activity of this enzyme in plants gives a good estimate of the nitrogen status of the plant and is very often correlated with growth and yield. Although it is difficult to explain the physiological significance and the mechanism of effects of several factors on the enzyme activity, in some cases suitable postulates have been advanced. In general, the enzyme activity in a plant tissue is a balance between its relative rates of synthesis/degradation and activation/inactivation. Factors may affect the overall activity by interfering with either of these processes.  相似文献   

3.
Light control of extractable nitrate reductase activity in higher plants   总被引:3,自引:0,他引:3  
Light regulation of extractable nitrate reductase (NR) activity of higher plants is complicated by: 1) involvement of several photoreceptors, 2) differences in the relative importance of the several photoreceptors among species and among developmental stages of the same species, 3) two types of effects – alteration of activity of existing NR and influences on de novo synthesis of NR, and 4) differing forms of NR within the same species. The interrelationships of all of these factors are not clear. It may be that each system will have to be understood separately before a general model can be developed. Immunochemical quantification of NR from systems exposed to varied light regimes may enhance our understanding of this area. Currently few general conclusions can be made; however, we think that the following statements are true or are usually true: (1) Phytochrome influences extractable NR activity by the low irradiance response and high irradiance response in etiolated tissues. (2) In de-etiolated tissues phytochrome can influence NR activity decay at the end of a light period by the low irradiance response. (3) The phytochrome equilibrium or the absolute level of Pfr influences extractable NR activity in green tissues under white light. (4) Blue light influences extractable NR activity through phytochrome and another, unknown, blue light-absorbing pigment. Flavins may be involved in vitro in reactivation of inactivated NR. (5) Photosynthesis does not directly influence the induction of the forms of NR that require substrate and light for induction. (6) In some tissues there appears to be a close link between nitrite-reducing and nitrate-reducing capabilities. (7) Much circumstantial evidence from kinetic and protein-synthesis-inhibitor studies and the only available immunochemical data indicate that light induces de novo synthesis of NR, resulting in increased extractable activity.  相似文献   

4.
5.
D. Kaplan  A. M. Mayer  S. H. Lips 《Planta》1978,138(3):205-209
Comparative studies of nitrate-activated nitrate reductase (NR-NO2) and nitrate-induced nitrate reductase (NR-NO3) (EC 1.6.6.2) indicate that the enzymes differ in structure, heat stability, and pH dependence, but have the same cofactor requirment. NR-NO2 developes in barley (Hordeum vulgare L. var. Dvir) seedlings as NR-NO3 disappears. A transition from the active to the inactive form of nitrate reductase takes place. Nitrite seems to activate the inactive form of the enzyme.  相似文献   

6.
7.
Some characteristics of nitrate reductase from higher plants   总被引:17,自引:28,他引:17       下载免费PDF全文
With respect to cofactor requirements, NADH, and FMNH2 were equally effective as electron donors for nitrate reductase obtained from leaves of maize, marrow, and spinach, when the cofactors were supplied in optimal concentrations. The concentration of FMNH2 required to obtain half-maximal activity was from 40- to 100-fold higher than for NADH. For maximal activity with the corn enzyme, 0.8 millimolar FMNH2 was required. In contrast, NADPH was functional only when supplied with NADP:reductase and exogenous FMN (enzymatic generation of FMNH2).

All attempts to separate the NADH2- and FMNH2-dependent nitrate reductase activities were unsuccessful and regardless of cofactor used equal activities were obtained, if cofactor concentration was optimal. Unity of NADH to FMNH2 activities were obtained during: A) purification procedures (4 step, 30-fold); B) induction of nitrate reductase in corn seedlings with nitrate; and C) inactivation of nitrate reductase in intact or excised corn seedlings. The NADH- and FMNH2-dependent activities were not additive.

A half-life for nitrate reductase of approximately 4 hours was estimated from the inactivation studies with excised corn seedlings. Similar half-life values were obtained when seedlings were incubated at 35° in a medium containing nitrate and cycloheximide (to inhibit protein synthesis), or when both nitrate and cycloheximide were omitted.

In those instances where NADH activity but not FMNH2 activity was lost due to treatment (temperature, removal of sulfhydryl agents, addition of p-chloromercuribenzoate), the loss could be explained by inactivation of the sulfhydryl group (s) required for NADH activity. This was verified by reactivation with exogenous cysteine.

Based on these current findings, and previous work, it is concluded that nitrate reductase is a single moiety with the ability to utilize either NADH or FMNH2 as cofactor. However the high concentration of FMNH2 required for optimal activity suggests that in vivo NADH is the electron donor and that nitrate reductase in higher plants should be designated NADH:nitrate reductase (E.C. 1.6.6.1).

  相似文献   

8.
9.
10.
Nitrate reductase activity and NR protein levels in various leaf tissues were drastically decreased (<3.5% of normal activity) either by keeping detached leaves in continuous darkness for up to 6 d (spinach), or by growing plants (pea, squash) hydroponically on ammonium as the sole N-source, or by germinating and growing etiolated seedlings in complete darkness (squash). The presence of nitrate reductase protein kinase (NRPK), nitrate reductase protein phosphatase (NRPP) and inhibitor protein (IP) was examined by measuring the ability of NR-free desalted extracts to inactivate (ATP-dependent) and reactivate (5-AMP/EDTA-dependent) added purified spinach NR in vitro. Extracts from low-NR plants (ammonium-grown pea and squash) were also prepared from leaves harvested at the end of a normal light or dark phase, or after treating leaves with anaerobiosis, uncouplers or mannose, conditions which usually activate NR in nitrategrown normal plants. Without exception, extracts from NR-deficient plant tissues were able to inactivate and reactivate purified spinach NR with normal velocity, irrespective of pretreatment or time of harvest. Considerable NRPK, NRPP and IP activities were also found in extracts from almost NR-free ripe fruits (cucumber and tomato). Activities were totally absent, however, in extracts from isolated spinach chloroplasts. The NRPK and IP fractions were partially purified with normal yields from NR-deficient squash or spinach leaves, following the purification protocol worked out for nitrate-grown spinach. The Ca2+/Mg2+-dependent kinase fraction from NR-deficient squash or spinach phosphorylated added purified spinach NR with -[32P]ATP and inactivated the enzyme after addition of IP. It is suggested (i) that the auxiliary proteins (NRPK, IP, NRPP) which modulate NR are rather species- or organ-unspecific, (ii) that they do not turn over as rapidly as does NR, (iii) that they are probably expressed independently of NR, and (iiii) that they are not covalently modulated, but under control of metabolic and/or physical signals which are removed by desalting.Abbreviations IP inhibitor protein - NR NADH-nitrate reductase - NRA nitrate reductase activity - NRPK nitrate reductase protein kinase - NRPP nitrate reductase protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft (SFB 251).  相似文献   

11.
12.
Nitrogen fixing plants of lucerne (Medicago sativa L. cv. Aragón) were grown in a glasshouse for three months in the absence of nitrate, and then supplied with 5 mM KNO3 for a week. In control (non-nitrate fed) plants, nitrate reductase activity (NRA EC 1.6.6.1) was detected only in nodules. After nitrate supply, root NRA showed a transient increase. Shoot NRA increased with time, paralleling changes in nitrate distribution; stem NRA represented nearly 50% of total NRA in plant tissues. Total nitrogen, expressed on a dry weight basis, tended to decrease in shoots upon nitrate supply. Bacteroid NRA (EC 1.7.99.4) showed a great variation depending on Rhizobium meliloti strains, ranging from 5 to 40% of total plant NRA. However, different Rhizobium strains did not give different results in terms of plant growth parameters, nitrate or organic nitrogen content.  相似文献   

13.
Having long been debated, it is only in the last few years that a concensus has emerged that the cyclic flow of electrons around Photosystem I plays an important and general role in the photosynthesis of higher plants. Two major pathways of cyclic flow have been identified, involving either a complex termed NDH or mediated via a pathway involving a protein PGR5 and two functions have been described-to generate ATP and to provide a pH gradient inducing non-photochemical quenching. The best evidence for the occurrence of the two pathways comes from measurements under stress conditions-high light, drought and extreme temperatures. In this review, the possible relative functions and importance of the two pathways is discussed as well as evidence as to how the flow through these pathways is regulated. Our growing knowledge of the proteins involved in cyclic electron flow will, in the future, enable us to understand better the occurrence and diversity of cyclic electron transport pathways. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

14.
The inactive form of NADH-nitrate reductase from spinach and Chlorella fusca is fully reactivated in short periods of time when the enzyme-complex is illuminated with white or blue light but not with red light. Flavin nucleotides greatly accelerate the photoreactivation process. The results suggest that blue light might act as a modulating agent in the assimilation of nitrate in green algae and higher plants.  相似文献   

15.
16.
17.
Enhancement spectra for photosynthesis of intact leaves of higherplants were investigated by means of the rate of CO2 absorptionunder atmospheric conditions. Enhancement spectra for photosystem(system)II measured with a reference beam of 700 nm had twopronounced peaks at about 480 and 650 nm and lower humps at540–600 nm in all of the nine species tested. By the useof a rice mutant which lacks chlorophyll b, it was revealedthat the 650-nm peak and the middle humps in the spectrum canbe attributed mostly to chlorophyll b absorption, whereas the480-nm peak must be due to the absorption of carotenoids andchlorophyll b. Enhancement for system I in wheat had a peakat about 715 nm, and the maximum was much higher than that ofthe enhancement for system II. Enhancement between a red anda farred light for wheat was much greater for the farred lightthan for the red light in the presence of an excess amount ofthe other light. These results demonstrate that the enhancementphenomenon in higher plants is essentially the same as thatin green algae. (Received November 30, 1977; )  相似文献   

18.
Evidence is presented which suggests that the NAD(P)H-cytochrome c reductase component of nitrate reductase is the main site of action of the inactivating enzyme. When tested on the nitrate reductase (NADH) from the maize root and scutella, the NADH-cytochrome c reductase was inactivated at a greater rate than was the FADH2-nitrate reductase component. With the Neurospora nitrate reductase (NADPH) only the NADPH-cytochrome c reductase was inactivated. p-Chloromercuribenzoate at 50 muM, which gave almost complete inhibition of the NADH-cytochrome c reductase fraction of the maize nitrate reductase, had no marked effect on the action of the inactivating enzyme. A reversible inactivation of the maize nitrate reductase has been shown to occur during incubation with NAD(P)H. In contrast to the action of the inactivating enzyme, it is the FADH2-nitrate reductase alone which is inactivated. No inactivation of the Neurospora nitrate reductase was produced by NAD(P)H alone and also in the presence of FAD. The lack of effect of the inactivating enzyme and NAD(P)H on the FADH2-nitrate reductase of Neurospora suggests some differences in its structure or conformation from that of the maize enzyme. A low level of cyanide (0.4 mu M) markedly enhanced the action of NAD(P)H on the maize enzyme; Cyanide at a higher level (6 mu M) did give inactivation of the Neurospora nitrate reductase in the presence of NADPH and FAD. The maize nitrate reductase, when partially inactivated by NADH and cyanide, was not altered as a substrate for the inactivating enzyme. The maize root inactivating enzyme was also shown to inactivate the nitrate reductase (NADH) in the pea leaf. It had no effect on the nitrate reductase from either Pseudomonas denitrificans or Nitrobacter agilis.  相似文献   

19.
20.
The responses of nitrate reductase (NR) activity and levels of NR-mRNA to environmental nitrate and exogenous cytokinins are characterised in roots and shoots of barley ( Hordeum vulgare L., cv. Golf), using a chemostate-like culture system for controlling nitrate nutrition. Experiments were mainly performed with split root cultures where nitrate-N was supplied at a constant relative addition rate of 0.09 day−1, and distributed between the subroots in a ratio of 20%:80%. The subroot NR-mRNA level and NR activity, as well as the endogenous level of zeatin riboside (ZR), increased when the local nitrate supply to one of the subroots was increased 4-fold by reversing the nitrate addition ratio (i.e. from 20%:80% to 80%:20%). Also shoot levels of ZR, NR-mRNA and NR activity increased in response to this treatment, even though the total nitrate supply remained unaltered. External supply of ZR at 0.1 μ M caused an approximately 3-fold increase in root ZR levels within 6 h. which is comparable to the nitrate-induced increase in root ZR. External application of ZR. zeatin. isopentenyl adenine or isopentenyl adenosine at 0.1 μ M caused from insignificant to 25% increases in NR-mRNA and activity in roots and up to 100% stimulation in shoots, whereas adenine or adenosine had no effect. No synergistic effects of perturbed nitrate supply and cytokinin application were detected in either roots or shoots. The translocation of nitrate from the root to the shoot was unaffected by application of ZR or switching the nitrate distribution ratio between subroots. The data give arguments for a physiological role of cytokinins in the response of root and shoot NR to environmental nitrate availability. The nature and limitations of the physiological role of cytokinins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号