首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to model laryngeal aerodynamics from a quasi-steady point of view[1], both the dynamic distri-bution of intraglottal air pressures that act upon the vocal folds and the tissue properties of the vocal folds are required[2]. Concerning the first po…  相似文献   

2.
Intraglottal velocity measurements were taken using particle image velocimetry and the corresponding estimates for the intraglottal pressure were computed using the pressure Poisson equation. Results from five canine larynges showed that when the flow separated from the divergent glottal walls during closing, the vortices that were formed in the separated region of the glottis created negative pressure near the superior aspect of the folds. The magnitude of the negative pressure was directly proportional to the subglottal pressure. At low subglottal pressure, negative pressures at the superior edge were not observed when the divergence angle of the wall was minimal and the glottal flow did not separate from the wall.  相似文献   

3.
Human phonation does not merely depend on the vibration of the vocal folds. Research by clinical and computer simulations has demonstrated that the false vocal fold (FVF) is an important laryngeal con-striction that plays a vital role during human voice production. This study explored the effects of the FVF gaps using both the three-dimensional Plexiglas model and the numerical computation methods. Twelve FVF gaps (ranging from 0.02 to 2.06 cm) were used in this study at three glottal angles (uniform and convergent/divergent 40°), two minimal glottal diameters (Dg) (0.04 cm and 0.06 cm) separately, and the constant subglottal pressure (8 cm H2O). The results suggested that (1) the intralaryngeal pressure was the lowest and the flow was the highest (least flow resistance) when the FVF gap was 1.5-2 times greater than Dg; (2) the divergent glottal angle gave lower pressure and greater flow than the conver-gent and uniform glottal angle as there were no FVF conditions; (3) the presence of the FVF decreased the effects of the glottal angle to a certain extent; and more importantly, (4) the presence of the FVF also moved the separation points downstream, straightened the glottal jet for a longer distance, decreased the overall laryngeal resistance, and reduced the energy dissipation, suggesting the significance of FVF in efficient voice production. These results may be incorporated in the phonatory models (physical or computational) for better understanding of vocal mechanics. The results might also be helpful in exploring the surgical and rehabilitative intervention of related voice problems.  相似文献   

4.
对于非对称声带发声过程的研究,有助于将正常语音的研究拓展到病理状态,从而为嗓音康复工程打下基础。采用具有嵌入式可活动声门结构的喉部物理模型,研究了声门最小直径为0.0402cm.跨声门压分别为100、500、1000和1500Pa时,全喉及半喉内的准稳态流场分布及其与发声参量的关系。同时.运用三维有限元方法预测了上述边界条件对应的流场分布,计算结果有效地支持了实验数据。结果表明,对称结构下存在着非对称压力和速度成分,但是由于它所占的比率有限(不超过10%),对正常发声的影响不大。非对称结构下,由声门入口处极高的上下表面压力差(通常为跨声门压的1-3倍)导致的倾斜流和涡流的出现、气流分离点位置后移、分离区域增大、声门出入口间压差占跨声门压的比率降低(平均30%)、压力速度场的变化程度减弱等因素以及由此带来的能量损耗,是非对称结构下发声效率降低、发音失真的主要原因。研究提示:声门重建方案的设计应尽量满足对称结构原则。  相似文献   

5.
6.
7.
Within the human larynx, the ventricular folds serve primarily as a protecting valve during swallowing. They are located directly above the sound-generating vocal folds. During normal phonation, the ventricular folds are passive structures that are not excited to periodical oscillations. However, the impact of the ventricular folds on the phonation process has not yet been finally clarified.An experimental synthetic human larynx model was used to investigate the effect of the ventricular folds on the phonation process. The model includes self-oscillating vocal fold models and allows the comparison of the pressure distribution at multiple locations in the larynx for configurations with and without ventricular folds.The results indicate that the ventricular folds increase the efficiency of the phonation process by reducing the phonation threshold level of the pressure below the vocal folds. Two effects caused by the ventricular folds could be identified as reasons: (1) a decrease in the mean pressure level in the region between vocal and ventricular folds (ventricles) and (2) an increase in the glottal flow resistance.The reason for the first effect is a reduction of the pressure level in the ventricles due to the jet entrainment and the low static pressure in the glottal jet. The second effect results from an increase in the glottal flow resistance that enhances the aerodynamic energy transfer into the vocal folds. This effect reduces the onset threshold of the pressure difference across the glottis.  相似文献   

8.
Three dimensional finite element models of cam-type FAI with alpha angles of 60°, 70°, 80°, and 90° were created to investigate the cartilage contact mechanics in daily activities. Intra-articular cartilage contact pressures during routine daily activities were assessed and cross-compared with a normal control hip. Alpha angles and hip range of motion were found to have a combined influence on the cartilage contact mechanics in hips with cam-type FAI, thereby resulting in abnormally high pressures and driving the cartilage damage. In particular, alpha angles of 80° or greater contribute to substantial pressure increase under certain types of daily activities.  相似文献   

9.
The simultaneous assessment of glottal dynamics and larynx position can be beneficial for the diagnosis of disordered voice or speech production and swallowing. Up to now, methods either concentrate on assessment of the glottis opening using optical, acoustical or electrical (electroglottography, EGG) methods, or on visualisation of the larynx position using ultrasound, computer tomography or magnetic resonance imaging techniques.The method presented here makes use of a time-multiplex measurement approach of space-resolved transfer impedances through the larynx. The fast sequence of measurements allows a quasi simultaneous assessment of both larynx position and EGG signal using up to 32 transmit–receive signal paths. The system assesses the dynamic opening status of the glottis as well as the vertical and back/forward motion of the larynx.Two electrode-arrays are used for the measurement of the electrical transfer impedance through the neck in different directions. From the acquired data the global and individual conductivity is calculated as well as a 2D point spatial representation of the minimum impedance.The position information is shown together with classical EGG signals allowing a synchronous visual assessment of glottal area and larynx position. A first application to singing voice analysis is presented that indicate a high potential of the method for use as a non-invasive tool in the diagnosis of voice, speech, and swallowing disorders.  相似文献   

10.
Parkinson's disease (PD) is well known to cause voice impairments. The aim of this study is to evaluate subjective and objective changes in voice quality in patients with PD in Croatian language speakers. Twenty one patients (11 male and 10 female) with PD and twenty one age-matched (10 male and 11 female) of the control group were assessed. Voice impairment was scored according to Voice Handicap Index (VHI). Patient's perceptual voice analysis was assessed using GRBAS scale including Grade of Dysphonia, Roughness, Breathiness, Asthenia and Strain items. The analysed objective voice parametars were: fundamental frequency, highest frequency, lowest frequency, voice range, jitter, shimmer, maximum phonation time and s/z ratio. In all patients we performed videolaryngostroboscopic examination. Compared with the control group we found the significant differences in VHI, in GRBAS scale (p < 0.05 in all items except asthenia). On videostroboscopic examination, laryngeal tremor was present only in PD group (6 patients), abnormalities of the mucosal wave was found more frequent in PD group (17 versus 8 patients) and also non-closure glottis pattern (11 versus 6 patients). There was no significant difference in the objective voice parametars except in maximum phonation time which was shorter in PD group (15.8 seconds and 23 seconds, p = 0.014) and voice range, which was shorter in PD group (111 Hz versus 147 Hz, p = 0.0465). No one of patients with PD was included in any form of speech therapy. The voice disability in PD is generally well known, but very often underestimated. In this study we found which components of voice were more affected. The voice quality has a significant impact on life quality and potential in assessment for severity of disease state and for the efficacy of treatment.  相似文献   

11.
In recent legal proceedings, forensic phoneticians were called upon to analyse a tape-recorded message intended for the blackmail of a bank manager following the kidnap of his wife. The brief was to establish the likelihood that the tape recording may have been made by any one of three suspects, samples of whose speech were also made available. The comparison was greatly complicated by voice disguise employed by the speaker who recorded the kidnap tape. This disguise comprised a form of phonation described phonetically as ‘glottal fry’ or vocal ‘creak’. This form of phonation occurs normally in normal speech, but it has received most attention in relation to voice pathologies. On the other hand there are few references to its use as a form of voice disguise. This paper discusses the nature of the creak, and examines its effectiveness as voice disguise. In addition, a method is described for speaker identification regardless of the disguise. Results indicate that trained listeners without repeated presentations or instrumentation are able to match speakers with 65% accuracy when one voice is creaky, compared with 90% accuracy for undisguised voices. Using a Euclidean metric to compare the power spectra of the [s] sound, we find that creaky disguised voices may be correctly matched with the undisguised voice of the same speaker (9 distracters) in 5 cases out of 10. However, when the computer's task is made more similar to the perceptual task, selecting one speaker out of two, it achieves an accuracy of 81%. Implications for forensic phonetics are discussed.  相似文献   

12.
In this study, we have reproduced the cough clearance process with an Eulerian wall film model. The simulated domain is based on realistic geometry from the literature, which has been improved by adding the glottis and epiglottis. The vocal fold movement has been included due to the dynamic mesh method, considering different abduction and adduction angles and velocities. The proposed methodology captures the deformation of the flexible tissue, considers non-Newtonian properties for the mucus, and enables us to reproduce a single cough or a cough epoch. The cough efficiency (CE) has been used to quantify the overall performance of the cough, considering many different boundary conditions, for the analysis of the glottis effect. It was observed that a viscous shear force is the main mechanism in the cough clearance process, while the glottis closure time and the epiglottis position do not have a significant effect on the CE. The cough assistance devices improve the CE, and the enhancement rate grows logarithmically with the operating pressure. The cough can achieve an effective mucus clearance process, even with a fixed glottis. Nevertheless, the glottis closure substantially improves the CE results.  相似文献   

13.
14.
When roots of cress seedlings (Lepidium sativum L.) are stimulated for 10 min at an angle of 135° (i.e. the root tips are pointing obliquely upward), the resulting geotropic curvatures become larger than after 10 min stimulation at 45°. This well-known behavior has been explained by the better conditions for statoliths, initially located in the floor end of the statocytes, to slide along the cell walls when root tips are pointing upward at 135° than when pointing downward at 45°. Accepting this explanation, one would predict the optimum angle of stimulation to be near 45° when roots had first been kept inverted long enough for their statoliths to accumulate in the opposite end of each functional statocyte. This prediction has been verified in experiments with cress seedlings which were first kept inverted for 16 min, then stimulated for 10 min at given angles, and subsequently rotated parallel to the horizontal axis of the klinostat at 2 rpm. Under these conditions, roots stimulated at 45° curve faster during a 20 to 30 min period on the klinostat than roots stimulated at 135°, but thereafter they stop curving. Roots stimulated at 135°, on the other hand, although initially curving slower than those at 45°, continue curving for at least a whole hour, and attain larger curvatures than the others after 40 min. The optimum shifts from near 45° to near 135° during the course of the klinostat rotation. The behavior of normal and pre-invertcd roots is interpreted as the result of at least two effects: (1) a stimulation due to the movement of amyloplasts, which is enhanced if these are allowed to slide along the cell walls, and (2) a modification of the development of the resulting curvatures by tonic effects, which are inhibitory between stimulation angles 0° and 90°, and absent or enhancing between 90° and 180°.  相似文献   

15.
ObjectiveThe purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner.MethodsA realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle.ResultsOptimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°–12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles.ConclusionIt can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV.  相似文献   

16.
A procedure is described, based on a spline-function representation of ab initio peptide conformational geometry maps, that allows one to predict backbone bond distances and angles of proteins as functions of the peptide ?(N-Cα)/Ψ(Cα-C′) torsions with an accuracy comparable to that of high-resolution protein crystallography. For example, for the more than 40 residues of crambin, the rms deviation between predicted and crystallographic values of N-Cα-C′ is 1.9° for the 1.5 Å resolution structure and 1.9° for the 0.83 Å resolution structure, compared with angle variations of < 10°. Accurate information on protein backbone geometries is important for establishing dictionaries of flexible geometry functions for use in empirical peptide and protein modeling. © 1995 John Wiley & Sons, Inc.  相似文献   

17.

Background

Preparation of a uniform angle of walls is essential for making an ideal convergence angle in fixed prosthodontics. We developed a de novo detachable angle-correction apparatus for dental handpiece drills that could help the ideal tooth preparation.

Methods

We utilized a gyro sensor to measure the angular velocities to calculate the slope of an object by integrating the values, acceleration sensor to calculate the slope of an object by measuring the acceleration relative to gravity, and Kalman filter algorithm. Converting the angulation of the handpiece body to its drill part could be performed by a specific matrix formulation set on two reference points (2° and 6°). A flexible printed circuit board was used to minimize the size of the device. For convergence angle investigation, 16 volunteers were divided randomly into two groups for performing tooth preparation on a mandibular first molar resin tooth. All abutments were scanned by a 3D scanner (D700®, 3Shape Co., Japan), the convergence angle and tooth axis deviation were analyzed by a CAD program (SolidWorks 2013®, Dassault Systems Co., USA) with statistical analysis by Wilcoxon signed-rank test (α?=?0.05) using SPSS statistical software (Version 16.0, SPSS Inc.).

Results

This device successfully maintained the stable zero point (less than 1° deviation) at different angles (0°, 30°, 60°, 80°) for the first 30 min. In single tooth preparation, without this apparatus, the average bucco-lingual convergence angle was 20.26° (SD 7.85), and the average mesio–distal (MD) convergence angle was 17.88° (SD 7.64). However, the use of this apparatus improved the average BL convergence angle to 13.21° (SD 4.77) and the average MD convergence angle to 10.79° (SD 4.48). The angle correction device showed a statistically significant effect on reducing the convergence angle of both directions regardless of the order of the directions.

Conclusions

The angle correction device developed in this study is capable of guiding practitioners with high accuracy comparable to that of commercial navigation surgery. The volume of the angle correction device is much smaller than that of any other commercial navigation surgery system. This device is expected to be widely utilized in various fields of orofacial surgery.
  相似文献   

18.
Klemuk SA  Riede T  Walsh EJ  Titze IR 《PloS one》2011,6(11):e27029
Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice.  相似文献   

19.
Influence of glottic aperture on the tracheal flow   总被引:3,自引:0,他引:3  
The extra-thoracic mouth-throat area has a major influence on the aerosol delivery to the proximal or peripheral intra-thoracic airways. To characterize the particle deposition in this area, it is important to investigate first the flow structures in this crucial--in relation to the aerosol deposition--region. The glottis, which is delimited by the vocal cords and therefore has the narrowest passage, generates a laryngeal jet and a reverse flow downstream the glottis. It is generally assumed that the glottis has different shapes and cross-sectional areas at different moments during the respiratory cycle and also depends on the average inspiratory flow rate. Therefore, the influence of a circular glottal aperture, with a cross-sectional area of 90 mm2 and an elliptical and triangular shape, both with an area of 45 mm2, on the flow is investigated. However, the area of the circular aperture is twice as big as the area of the elliptical one, it has almost no influence on the flow structures. On the other hand, the triangular glottal aperture shifts the laryngeal jet in the direction of the posterior wall, and generates two pairs of counter rotating secondary vortices downstream the glottis, where the circular and elliptical only aperture generates one pair of vortices. The difference in pressure drop is more dominated by the cross-sectional area than by the shape of the glottis. This suggests the need for rendering geometry of future upper airway models even more realistic as the appropriate three-dimensional (3D) medical imaging techniques are becoming available.  相似文献   

20.
The hindered rotations of acetone were studied density functional theory (B3LYP) and second order Møller-Plesset approaches using 6-31G** and 6-311G** basis sets. One of the CH3 groups of acetone with fixed heavy atoms was rotated from 0.0 to 120°, and CCH angles were scanned from 90.3 to 130.3° to cover the potential energy surface of interest; a circular valley was obtained with the deepest potential value at a CCH angle equal to 109.3°. Potential energy profiles were then calculated by assuming that the molecular geometry could relax during rotation (i.e., each value of the torsion angle of the molecular geometry was optimized). Next, the two methyl groups were both rotated clockwise, and then one was rotated clockwise and the other counterclockwise. Using the variation method, and utilizing the first 20 harmonic oscillator wave functions, the energy levels, relative transition moment and relative transition intensities of the component of the hindered rotation ν2 (125.16 cm?1) were computed in a one-dimensional Schrodinger equation. The first three energy levels were almost degenerate; the next three were opened up, and the seventh energy level appeared above the level where tunneling can occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号