首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that flavonoids inhibit glucose uptake in cultured cells. In this report, we show that the grapefruit flavanone naringenin inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Naringenin acts by inhibiting the activity of phosphoinositide 3-kinase (PI3K), a key regulator of insulin-induced GLUT4 translocation. Although naringenin did not alter the phosphotyrosine status of the insulin receptor, insulin receptor substrate proteins, or PI3K, it did inhibit the phosphorylation of the downstream signaling molecule Akt. In an in vitro kinase assay, naringenin inhibited PI3K activity. A physiologically attainable dose of 6 microM naringenin reduced insulin-stimulated glucose uptake by approximately 20%. This inhibitory effect remained 24h after the removal of naringenin from the culture medium. Collectively, our findings suggest that the regular consumption of naringenin in grapefruit may exacerbate insulin resistance in susceptible individuals via impaired glucose uptake in adipose tissue.  相似文献   

2.
Capsaicin has been reported to regulate blood glucose levels and to ameliorate insulin resistance in obese mice. This study demonstrates that capsaicin increases glucose uptake directly by activating AMP-activated protein kinase (AMPK) in C2C12 muscle cells, which manifested as an attenuation of glucose uptake when compound C, an AMPK inhibitor, was co-administered with capsaicin. However, the insulin signaling molecules insulin receptor substrate-1 (IRS-1) and Akt were not affected by capsaicin. Additional results showed that p38 mitogen-activated protein kinase (MAPK) is also involved in capsaicin-induced glucose transport downstream of AMPK because capsaicin increased p38 MAPK phosphorylation significantly and its specific inhibitor SB203580 inhibited capsaicin-mediated glucose uptake. Treatment with an AMPK inhibitor reduced p38 MAPK phosphorylation, but the p38 MAPK inhibitor had no effect on AMPK. Capsaicin stimulated ROS generation in C2C12 muscle cells, and when ROS were captured using the nonspecific antioxidant NAC, the increase in both capsaicin-induced AMPK phosphorylation and capsaicin-induced glucose uptake was attenuated, suggesting that ROS function as an upstream activator of AMPK. Taken together, these results suggest that capsaicin, independent of insulin, increases glucose uptake via ROS generation and consequent AMPK and p38 MAPK activations.  相似文献   

3.
Apelin is an endogenous peptide hormone recently implicated in glucose homeostasis. However, whether apelin affects glucose uptake in myocardial tissue remains undetermined. In this study, we utilized in vivo, ex vivo and in vitro methods to study apelin's effect on myocardial glucose uptake. Pyroglutamated apelin-13 (2 mg/kg/day) was administered to C57BL6/J mice for 7 days. In vivo myocardial glucose uptake was measured by FDG-PET scanning, and GLUT4 translocation was assessed by immunofluorescence imaging. For in vitro studies, differentiated H9C2 cardiomyoblasts were exposed to pyroglutamated apelin-13 (100 nM) for 2 h. To test their involvement in apelin-stimulated myocardial glucose uptake, the energy sensing protein kinase AMPK were inhibited by pharmacologic inhibition (compound C) and RNA interference. IRS-1 phosphorylation was assessed by western blotting using an antibody directed against IRS-1 Ser-789-phosphorylated form. We found that apelin increased myocardial glucose uptake and GLUT4 membrane translocation in C57BL6/J mice. Apelin was also sufficient to increase glucose uptake in H9C2 cells. Apelin-mediated glucose uptake was significantly decreased by AMPK inhibition. Finally, apelin increased IRS-1 Ser-789 phosphorylation in an AMPK-dependent manner. The results of our study demonstrated that apelin increases myocardial glucose uptake through a pathway involving AMPK. Apelin also facilitates IRS-1 Ser-789 phosphorylation, suggesting a novel mechanism for its effects on glucose uptake.  相似文献   

4.
Previous studies have demonstrated that interleukin-15 (IL-15) has important anabolic effects on muscle protein metabolism. In the present investigation we have analysed the effects of IL-15 on glucose metabolism in skeletal muscle. Administration of a single dose of the cytokine (100 μg/kg body weight) resulted in a 32% increase on glucose uptake (as measured by the uptake of 2-deoxyglucose) in skeletal muscle. The effects observed on glucose uptake were direct since in vitro incubations of rat EDL muscles in the presence of the cytokine resulted in a 30% increase in glucose uptake. Similarly, IL-15 increased glucose uptake in C2C12 cell cultures, this being related with an increase in both glucose oxidation to CO2 and the incorporation into muscle lipid. The effects of the cytokine were associated with an increase in GLUT-4 mRNA, suggesting a higher effect in insulin sensitivity. In conclusion, the data presented here indicate that IL-15 facilitates glucose metabolism in skeletal muscle and, therefore, a possible role of the cytokine as an antidiabetogenic drug merits future investigations.  相似文献   

5.
To find PTP1B inhibitors from natural products, two new compounds (1 and 2), along with nine known compounds (311), were isolated from a methanol-soluble extract of Iris sanguinea seeds. The structures of compounds 1 and 2 were determined based on extensive spectroscopic data analysis including UV, IR, NMR, and MS. The IC50 value of compound 5 on protein tyrosine phosphatase 1B (PTP1B) inhibitory activity is 7.30 ± 0.88 µM with a little activity compared to the IC50 values of the tested positive compound. Compound 5 significantly enhanced glucose uptake and activation of pACC, pAMPK and partially Erk1/2 signaling. These results suggest that compound 5 from Iris sanguinea seeds are utilized as both PTP1B inhibitors and regulators of glucose uptake. These beneficial effects could be applied to treat metabolic diseases such as diabetes and obesity.  相似文献   

6.
Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated β-galactosidase (SA-β-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-β-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53–p21 pathway is a mediator of LKB1/AMPK-induced senescence.  相似文献   

7.
AMP-activated protein kinase (AMPK) activators are known to increase energy metabolism and to reduce body weight, as well as to improve glucose uptake. During for searching AMPK activators, a new anthraquinone, modasima A (10), along with eighteen known analogues (19 and 1119) were isolated from an ethanol extract of the roots of Morinda longissima Y. Z. Ruan (Rubiaceae). Using the fluorescent tagged glucose analogues, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (2-NBDG), insulin mimetics were screened with compounds 119 in 3T3-L1 adipocytes. Among them, compounds 2, 8 and 10 enhanced significantly glucose uptake into adipocytes and up-regulated the phosphorylated AMPK (Thr172) whereas the glucose uptake enhancing activities of compounds 2, 8 and 10 were abrogated by treatment of compound C, an AMPK inhibitor. Taken together, these anthraquinones showed the potential action as insulin mimetic to improve glucose uptake via activation of AMPK.  相似文献   

8.
Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-γ) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-γ activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-γ in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.  相似文献   

9.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes.  相似文献   

10.
Young JC  Young RE 《Life sciences》2002,71(15):1731-1737
Glucose transport in muscle is a function of the muscle metabolic state, as evidenced by the increase in glucose transport which occurs with conditions of altered aerobic metabolism such as hypoxia or contractile activity. The energy state of the muscle can be determined by the muscle phosphocreatine concentration. Dietary supplementation of creatine has been shown to increase both phosphocreatine (PCr) and creatine (TCr) levels in muscle, although not in the same proportion, so that the PCr/TCr ratio falls suggesting an altered energy state in the cell. The purpose of this study was to determine the effect of increased creatine content on glucose uptake in muscle. PCr and TCr were determined in plantaris muscles from rats following five weeks of dietary supplementation of creatine monohydrate (300 mg/kg/day). (3)H-2-deoxyglucose uptake was measured in epitrochlearis muscles incubated in the presence or absence of a maximally stimulating dose of insulin. Despite a significant increase in creatine content in muscle, neither basal nor insulin-stimulated glucose uptake was altered in creatine supplemented rats. Since PCr levels were not increased with creatine supplementation, these results suggest that the actual concentration of PCr is a more important determinant of glucose uptake than the PCr/TCr ratio.  相似文献   

11.
Berberine acutely activates the glucose transport activity of GLUT1   总被引:1,自引:0,他引:1  
Cok A  Plaisier C  Salie MJ  Oram DS  Chenge J  Louters LL 《Biochimie》2011,93(7):1187-1192
Berberine, which has a long history of use in Chinese medicine, has recently been shown to have efficacy in the treatment of diabetes. While the hypoglycemic effect of berberine has been clearly documented in animal and cell line models, such as 3T3-L1 adipocytes and L6 myotube cells, the mechanism of action appears complex with data implicating activation of the insulin signaling pathway as well as activation of the exercise or AMP kinase-mediated pathway. There have been no reports of the acute affects of berberine on the transport activity of the insulin-insensitive glucose transporter, GLUT1. Therefore, we examined the acute effects of berberine on glucose uptake in L929 fibroblast cells, a cell line that express only GLUT1. Berberine- activated glucose uptake reaching maximum stimulation of five-fold at >40 μM. Significant activation (P < 0.05) was measured within 5 min reaching a maximum by 30 min. The berberine effect was not additive to the maximal stimulation by other known stimulants, azide, methylene blue or glucose deprivation, suggesting shared steps between berberine and these stimulants. Berberine significantly reduced the Km of glucose uptake from 6.7 ± 1.9 mM to 0.55 ± 0.08 mM, but had no effect on the Vmax of uptake. Compound C, an inhibitor of AMP kinase, did not affect berberine-stimulated glucose uptake, but inhibitors of downstream kinases partially blocked berberine stimulation. SB203580 (inhibitor of p38 MAP kinase) did not affect submaximal berberine activation, but did lower maximal berberine stimulation by 26%, while PD98059 (inhibitor of ERK kinase) completely blocked submaximal berberine activation and decreased the maximal stimulation by 55%. It appears from this study that a portion of the hypoglycemic effects of berberine can be attributed to its acute activation of the transport activity of GLUT1.  相似文献   

12.
Insulin secretion and glucose transport are the major mechanisms to balance glucose homeostasis. Recently, we found that the death effector domain-containing DEDD inhibits cyclin-dependent kinase-1 (Cdk1) function, thereby preventing Cdk1-dependent inhibitory phosphorylation of S6 kinase-1 (S6K1), downstream of phosphatidylinositol 3-kinase (PI3K), which overall results in maintenance of S6K1 activity. Here we newly show that DEDD forms a complex with Akt and heat-shock protein 90 (Hsp90), and supports the stability of both proteins. Hence, in DEDD−/− mice, Akt protein levels are diminished in skeletal muscles and adipose tissues, which interferes with the translocation of glucose-transporter 4 (GLUT4) upon insulin stimulation, leading to inefficient incorporation of glucose in these organs. Interestingly, as for the activation of S6K1, suppression of Cdk1 is involved in the stabilization of Akt protein by DEDD, since diminishment of Cdk1 in DEDD−/− cells via siRNA expression or treatment with a Cdk1-inhibitor, increases both Akt and Hsp90 protein levels. Such multifaceted involvement of DEDD in glucose homeostasis by supporting both insulin secretion (via maintenance of S6K1 activity) and glucose uptake (via stabilizing Akt protein), may suggest an association of DEDD-deficiency with the pathogenesis of type 2 diabetes mellitus.  相似文献   

13.
2-NBDG as a fluorescent indicator for direct glucose uptake measurement   总被引:5,自引:0,他引:5  
Evaluation of glucose uptake ability in cells plays a fundamental role in diabetes mellitus research. In this study, we describe a sensitive and non-radioactive assay for direct and rapid measuring glucose uptake in single, living cells. The assay is based on direct incubation of mammalian cells with a fluorescent d-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) followed by flow cytometric detection of fluorescence produced by the cells. A series of experiments were conducted to define optimal conditions for this assay. By this technique, it was found that insulin lost its physiological effects on cells in vitro meanwhile some other anti-diabetic drugs facilitated the cell glucose uptake rates with mechanisms which likely to be different from those of insulin or those that were generally accepted of each drug. Our findings show that this technology has potential for applications in both medicine and research.  相似文献   

14.

Background

Calorie restriction (CR) is accepted as an experimental anti-aging paradigm. Several important signal transduction pathways including AMPK and SIRT1 are implicated in the regulation of physiological processes of CR. However, the mechanisms responsible for adaptations remain unclear in humans.

Scope of review

Four overweight male participants were enrolled and treated with 25% CR of their baseline energy requirements for 7 weeks. Characteristics, including body weight (BW), body mass index (BMI), %fat, visceral fat area (VFA), mean blood pressure (MBP) and VO2 max, as well as metabolic parameters, such as insulin, lipid profiles and inflammatory makers and the expression of phosphorylated AMPK and SIRT1 in peripheral blood mononuclear cells (PBMNCs), were determined at baseline and then after 7 weeks. In addition, we assessed the effects of the serum collected from the participants on AMPK and SIRT1 activation and mitochondrial biogenesis in cultured human skeletal muscle cells.

Major conclusions

After CR, BW, BMI, %fat, VFA and MBP all significantly decreased, while VO2 max increased, compared to those at baseline. The levels of fasting insulin, free fatty acid, and inflammatory makers, such as interleukin-6 and visfatin, were significantly reduced, whereas the expression of phosphorylated AMPK and SIRT1 was significantly increased in PBMNCs collected after CR, compared to those at baseline. The skeletal muscle cells that were cultured in serum collected after CR showed an increase in AMPK and SIRT1 activity as well as mitochondrial biogenesis.

General significance

CR is beneficial for obesity-related metabolic alterations and induces cellular adaptations against aging, possibly through AMPK and SIRT1 activation via circulating factors.  相似文献   

15.

Aims

SIRT1 and AMP-activated protein kinase (AMPK) share common activators, actions and target molecules. Previous studies have suggested that a putative SIRT1-AMPK regulatory network could act as the prime initial sensor for calorie restriction-induced adaptations in skeletal muscle—the major site of insulin-stimulated glucose disposal. Our study aimed to investigate whether a feedback loop exists between AMPK and SIRT1 in skeletal muscle and how this may be involved glucose tolerance.

Main methods

To investigate this, we used skeletal muscle-specific AMPKα1/2 knockout mice (AMPKα1/2−/−) fed ad libitum (AL) or a 30% calorie restricted (CR) diet and L6 rat myoblasts incubated with SIRT1 inhibitor (EX527).

Key findings

CR-AMPKα1/2−/− displayed impaired glucose tolerance (*p < 0.05), in association with down-regulated SIRT1 and PGC-1α expression (< 300% vs. CR-WT, ±±p < 0.01). Moreover, AMPK activity was decreased following SIRT1 inhibition in L6 cells (~ 0.5-fold vs. control, *p < 0.05).

Significance

This study demonstrates that skeletal muscle-specific AMPK deficiency impairs the beneficial effects of CR on glucose tolerance and that these effects may be dependent on reduced SIRT1 levels.  相似文献   

16.
LKB1 is a 50 kDa serine/threonine kinase that phosphorylates and activates the catalytic subunit of AMPK at its T-loop residue Thr 172. We prepared adenoviruses expressing the constitutive active (wild-type) form (CA) or dominant negative (kinase inactive, D194A mutant) form (DN) of LKB1 and overexpressed these proteins in cultured myotubes (C2C12 cells) and rat hepatoma cells (FAO cells). When analyzed by immunoblotting with the antibody against Thr172-phosphorylated AMPK, the phosphorylation of AMPK was increased (2.5-fold) and decreased (0.4-fold) in cells expressing CA and DN LKB1, respectively, as compared with Lac-Z expressing control cells. Immunoprecipitation experiments, using isoform-specific antibody, revealed these alterations of AMPK phosphorylation to be attributable to altered phosphorylation of AMPK alpha2, but not alpha1 catalytic subunits, strongly suggesting the alpha2 catalytic subunit to be the major substrate for LKB1 in mammalian cells. In addition, adiponectin or AICAR-stimulated AMPK phosphorylation was inhibited by overexpression of DN LKB1, while phenformin-stimulated phosphorylation was unaffected. These results may explain the difference in AMPK activation mechanisms between AMP and phenformin, and also indicate that AMPK phosphorylation by LKB1 is involved in AMP-stimulated AMPK activation. As a downstream target for AMPK, AICAR-induced glucose uptake and ACCbeta phosphorylation were found to be significantly reduced in DN LKB1 expressing C2C12 cells. The expression of key enzymes for gluconeogenesis, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was also dependent on LKB1 activities in FAO cells. These results demonstrate that LKB1 is a crucial regulator of AMPK activation in muscle and liver cells and, therefore, that LKB1 activity is potentially of importance to our understanding of glucose and lipid metabolism.  相似文献   

17.
With the aim to discover orally active small molecules that stimulate glucose uptake, high throughput screening of a library of 5000 drug-like compounds was conducted in differentiated skeletal muscle cells in presence of insulin. N-Substituted phthalazinone acetamide was identified as a potential glucose uptake modulator. Several novel derivatives were synthesized to establish structure activity relationships. Identified lead thiazolyl-phthalazinone acetamide (7114863) increased glucose uptake (EC50 of 0.07 ± 0.02 μM) in differentiated skeletal muscle cells in presence of insulin. Furthermore, 7114863 was superior to rosiglitazone under similar experimental conditions without inducing PPAR-γ agonist activity thus making it a very interesting scaffold.  相似文献   

18.
19.
Nitroxyl (HNO) has a unique, but varied, set of biological properties including beneficial effects on cardiac contractility and stimulation of glucose uptake by GLUT1. These biological effects are largely initiated by HNO's reaction with cysteine residues of key proteins. The intracellular production of HNO has not yet been demonstrated, but the small molecule, hydroxylamine (HA), has been suggested as possible intracellular source. We examined the effects of this molecule on glucose uptake in L929 fibroblast cells. HA activates glucose uptake from 2 to 5-fold within two minutes. Prior treatment with thiol-active compounds, such as iodoacetamide (IA), cinnamaldehyde (CA), or phenylarsine oxide (PAO) blocks HA-activation of glucose uptake. Incubation of HA with the peroxidase inhibitor, sodium azide, also blocks the stimulatory effects of HA. This suggests that HA is oxidized to HNO by L929 fibroblast cells, which then reacts with cysteine residues to exert its stimulatory effects. The data suggest that GLUT1 is acutely activated in L929 cells by modification of cysteine residues, possibly the formation of a disulfide bond within GLUT1 itself.  相似文献   

20.
Herein, we report a library consisting of some novel glitazones containing thiazolidinedione and its bioisosteres, rhodanine and oxadiazolidine ring structures as their basic scaffold for their antidiabetic activity. Twelve novel glitazones with diverse chemical structures were designed and synthesized by adopting appropriate synthetic schemes and analyzed. Later, subjected to in vitro glucose uptake assay in the absence and presence of insulin to confirm their antidiabetic activity using rat hemi-diaphragm. The titled compounds exhibited glucose uptake activity ranging weak to significant activity. Compounds 4, 5, 9, 11, 15, 16, 19 and 20 showed considerable glucose uptake activity apart from rosiglitazone, a standard drug. Compound 16 happens to be the candidate compound from this study to investigate further. The illustration about their design, synthesis, analysis and glucose uptake activity is reported here along with the in vitro and in silico study based structure–activity relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号