首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamine content and the activities of their main biosynthetic enzymes, ornithine decarboxylase (ODC, EC 4.1.1.17), arginine decarboxylase (ADC, EC 4.1.1.19), S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50), and arginase (EC 3.5.3.1.), were examined in crude extracts of Helianthus tuberosus tuber slices during the first synchronous cell cycle, induced by synthetic auxin, with or without the addition of 1 or 5 millimolar dicyclohexylamine (DCHA), an inhibitor of spermidine synthase. In the DCHA-treated slices a peak of accumulation of the drug was observed at 12 hours. Bound DCHA was also found. Free polyamine content generally increased, reaching a maximum at 12 to 18 hours in the S phase of the cycle; while spermidine content was decreased slightly with DCHA after 12 hours, putrescine almost doubled at 18 hours. Bound polyamines were also present. ODC and ADC showed a maximum activity at 15 and 18 to 21 hours, respectively, i.e. in the S phase; both activities increased slightly in the presence of 5 millimolar DCHA at or near the time of maximum activity. Arginase was initially very high and then rapidly decreased although a small peak of activity occurred at 15 hours. SAMDC, which had two peaks of activity, was initially inhibited by DCHA, and then stimulated, especially at 12 hours and in coincidence with the main peak, at 21 hours. Thus ODC, ADC, and SAMDC activities as well as polyamine titer increased before and during the S phase of the cell cycle and all declined during cell division. The slight inhibitory effect of DCHA was possibly due to its degradation in the tissue and to the fact that putrescine could substitute for the function(s) of spermidine.  相似文献   

2.
3.
4.
Summary Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L.) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL -difluoromethylarginine inhibited ADC activity, cellular putrescine content, DNA synthesis, and cell division. The effect was reversible by exogenous putrescine. Ornithine decarboxylase (ODC; EC 4.1.1.17) activity was always less than 10% of the ADC activity. Addition of DL -difluoromethylornithine had no effect on ODC activity, cellular polyamine levels, DNA synthesis, and cell division within the first 24 h but by 48 to 72 h it did inhibit these activities. Methylglyoxal bis(guanyl-hydrazone) inhibited S-adenosylmethionine decarboxylase (EC 4.1.1.50) activity without affecting DNA synthesis and cell division.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - SAMDC S-adenosylmethionine decarboxylase - DFMA DL -difluoro-methylarginine - DFMO DL -difluoromethylornithine - MGBG methylglyoxal bis(guanylhydrazone)  相似文献   

5.
Arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxydase (DAO) free amine and conjugated amine titers were estimated in leaf explants of Chrysanthemum morifolium Ramat. var. Spinder cultivated in vitro in relation to hormone treatment. Addition of benzyladenine (BA) to a basal medium caused the formation of buds on the explants. BA plus 2,4 dichlorophenoxyacetic acid (2,4 D) caused callus formation and proliferation. Formation of roots was obtained by addition of indolylacetic acid (IAA). Arginine decarboxylase (ADC) ornithine decarboxylase (ODC) and diamine oxidase (DAO) activities increased during the first days of culture when cell multiplication was rapid, followed by a sharp decline as the rate of cell division decreased and differentiation took place. DAO activities increased rapidly in proliferating and growing organs and decreased during maturity. This increase was concomitant with ADC and ODC activities and polyamine content (free and conjugated polyamines). The biosynthesis and oxidation of polyamines which occurred simultaneously in physiological states of intense metabolism such as cell division or organ formation were directly correlated. In callus cultures DAO activity was blocked throughout development and regulated neither the cellular levels of polyamines nor polyamine conjugates. Levels of polyamine conjugates were high in callus cultures throughout development. In foliar explants cultivated on a medium promoting callus, inhibition of ODC activity by DFMO (-DL-difluoromethylornithine, a specific enzyme-activated ODC inhibitor) resulting in an amide deficiency facilated the expression of differentiated cell function; substantial activation of DAO was observed until the emergence of the buds. On a medium promoting bud formation, -OH ethylhydrazine (DAO inhibitor) promoted callus formation without differentiation. In this system DAO activity was blocked and there were high levels of polyamines, especially polyamine conjugates, throughout the culture period. The relationship among free and conjugated polyamines related biosynthetic enzyme activities, DAO activities, cell division and organ formation is discussed.Abbreviations ADC = arginine decarboxylase - ODC = ornithine decarboxylase - DOA = diamine oxidase - DFMA = -DL-difluoromethylarginine - DFMO = -DL-difluoromethylornithine - Put = putrescine  相似文献   

6.
Polyamine levels and the activities of two polyamine biosynthetic enzymes, arginine decarboxylase (EC 4.1.1.19) and S-adenosylmethionine decarboxylase (EC 4.1.1.50), were determined during somatic embryogenesis of carrot (Daucus carota L.) cell cultures. Embryogenic cultures showed severalfold increases in polyamine levels over nondifferentiating controls. A mutant cell line that failed to form embryos but grew at the same rate as the wild-type line also failed to show increases in polyamine levels, thus providing evidence that this increased polyamine content was in fact associated with the development of embryos. Furthermore, inhibition of these increases in polyamines caused by drugs inhibited embryogenesis and the effect was reversible with spermidine. The activities of arginine decarboxylase and Sadenosylmethionine decarboxylase were found to be suppressed by auxin; however, the specific effects differed between exogenous 2,4-dichlorophenoxyacetic acid and endogenous indole-3-acetic acid. The results indicate that increased polyamine levels are required for cellular differentiation and development occurring during somatic embryogenesis in carrot cell cultures.Abbreviations ADC arginine decarboxylase - 2,4-D 2,4-dichlorophenoxyacetic acid - DFMA difluoromethylarginine - DCHAS dicyclohexylammonium sulfate - SAMDC S-adenosylmethionine decarboxylase  相似文献   

7.
The effects of ethylene and auxin on polyamine levels were studied in suspension-cultured cells of tobacco ( Nicotiana tabacum . L). Treatment of 4-day-cultured cells with ethylene increased the levels of spermidine and spermine. The activities of arginine decarboxylase (ADC; EC 4.1.1.19), ornithine decarboxylase (ODC: EC 4.1.1.17), and S -adenosylmethionine decarboxylase (SAMDC: EC 4.1.1.50) rapidly increased between 3 and 12 h. An auxin, indole-3-acetic acid (IAA), increased polyamine levels and activities of ADC, ODC and SAMDC. The spermine level continued to increase significantly during a 24-h incubation with IAA. The increases in polyamine accumulation induced by ethylene were partially offset by an inhibitor of ethylene action, 2,5-norbornadiene. It is suggested that the auxin-induced polyamine accumulation occurred directly, without metabolic competition between ethylene and polyamine biosynthesis, and indirectly, through auxin-induced ethylene formation.  相似文献   

8.
E. Cohen  H. Kende 《Planta》1986,169(4):498-504
Submergence and treatment with ethylene or gibberellic acid (GA3) stimulates rapid growth in internodes of deepwater rice (Oryza sativa L. cv. Habiganj Aman II). This growth is based on greatly enhanced rate of cell-division activity in the intercalary meristem (IM) and on increased cell elongation. We chose polyamine biosynthesis as a biochemical marker for cell-division activity in the IM of rice stems. Upon submergence of the plant, the activity of S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) in the IM increased six- to tenfold within 8 h; thereafter, SAMDC activity declined. Arginine decarboxylase (ADC; EC 4.1.1.19) showed a similar but less pronounced increase in activity. The activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in the IM was not affected by submergence. The levels of putrescine and spermidine also rose in the IM of submerged, whole plants while the concentration of spermine remained low. The increase in SAMDC activity was localized in the IM while the activity of ADC rose both in the node and the IM above it. The node also contained low levels of ODC activity which increased slightly following submergence. Increased activities of polyamine-synthesizing enzymes in the nodal region of submerged plants probably resulted from the promotion of adventitious root formation in the node. Treatment of excised rice-stem sections with ethylene or GA3 enhanced the activities of SAMDC and ADC in the IM and inhibited the decline in the levels of putrescine and spermidine. We conclude that SAMDC and perhaps also ADC may serve as biochemical markers for the enhancement of cell-division activity in the IM of deepwater rice.Abbreviations ADC arginine decarboxylase - GA gibberellin - IM intercalary meristem - ODC ornithine decarboxylase - SAM S-adenosylmethionine - SAMDC SAM decarboxylase  相似文献   

9.
A cDNA of tobacco BY-2 cells corresponding to an mRNA species which was rapidly induced by methyl jasmonate (MeJA) in the presence of cycloheximide (CHX) was found to encode ornithine decarboxylase (ODC). Another cDNA from a MeJA-inducible mRNA encoded S-adenosylmethionine synthase (SAMS). Although these enzymes could be involved in the biosynthesis of polyamines, the level of putrescine, a reaction product of ODC, increased slowly and while the levels of spermidine and spermine did not change following treatment of cells with MeJA. However, N-methylputrescine, which is a precursor of pyrrolidine ring of nicotine, started to increase shortly after MeJA-treatment of cells and the production of nicotine occured thereafter. The levels of mRNA for arginine decarboxylase (ADC), an alternative enzyme for putrescine synthesis, and that for S-adenosylmethionine decarboxylase (SAMDC), required for polyamine synthesis, were not affected by MeJA. In addition to mRNAs for ODC and SAMS, mRNA for putrescine N-methyltransferase (PMT) was also induced by MeJA. Unlike the MeJA-induction of ODC mRNA, MeJA-induction of SAMS and PMT mRNAs were blocked by CHX. The level of ODC mRNA declined after 1 to 4 h following MeJA treatment, while the levels of mRNAs for SAMS and PMT continued to increase. Auxin significantly reduced the MeJA-inducible accumulation of mRNAs for ODC, SAMS and PMT. These results indicate that MeJA sequentially induces expression of a series of genes involved in nicotine biosynthesis by multiple regulatory mechanisms.p>  相似文献   

10.
We have measured the activities of the two rate controlling enzymes in polyamine synthesis, L-ornithine decarboxylase (ODC) and S-adenosyl-L-methionine decarboxylase (SAMDC), and the concentrations of the polyamines, putrescine, spermidine and spermine, in the developing chick embryo from laying to hatching. The embryo exhibited major peaks in the ODC and SAMDC activities as well as in the concentrations of all three polyamines at 15 h (gastrulation), 23-30 h (early organogenesis), days 4-5 (mid-organogenesis), and days 12-17 (organ growth and maturation). In the 4 and a half-day-old embryo, ODC activity and polyamine concentrations were about twice as high in the head region as compared to the trunk region. In the 14-day-old embryo, the highest ODC and SAMDC activities were found in lung, intestine and kidney, and there was a positive correlation between the enzyme activities and the growth rates of most organs/tissues.  相似文献   

11.
12.
Ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and thymidine kinase (TK) activities and polyamine concentrations on the kidneys of male castrated rats were studied following sc injection of estradiol. Estradiol caused an 11-fold increase in ODC activity 24 hours after administration. SAMDC activity doubled but TK activity decreased by two-thirds 2 days after estradiol treatment. The concentrations of polyamines, especially putrescine, showed sharp elevations 2 days following estradiol treatment, 1 day after the peak of ODC activity. The increase in ODC activity was suppressed by cycloheximide and by actinomycin D. Estradiol and diethylstilbestrol (DES), but not progesterone increased ODC activity. Estradiol suppressed ODC activities of liver, thymus, adrenal glands, testes and prostate. A specific estradiol-binding protein was demonstrated in the rat kidney. The dissociation constant (Kd) was 1.64 × 10?10 M and numbers of binding sites were 31 fmoles/mg protein. Correlation between the binding of estradiol to the cytosol protein and elevation of ODC by estradiol was observed.  相似文献   

13.
The level of the three main polyamines putrescine, spermidine, and spermine and the biosynthetic enzyme arginine decarboxylase (ADC) decreased in Helianthus annuus L. seedlings subjected to increasing (50, 100, and 150 mm) NaCl concentrations. The pattern of polyamines in control plants increased during the initial 72 h and then reached a plateau. The putrescine level showed an increase of 370% after 72 h of development. The lower salt treatment slightly diminished the overall polyamine content. The highest NaCl concentration (150 mm) induced a strong putrescine diminution (from 381 to 78.9 nmol g−1 FW) at 72 h whereas a small decrease in ADC activity was detected. ODC was detected in neither control nor treated plantlets during the experimental period. The level of spermidine also decreased, but the magnitude of the decay was less pronounced than putrescine. The fact that ODC was not detected and ADC activity followed a pattern similar to that of putrescine led us to suppose that the variation in putrescine content could be attributed entirely to the decrease in ADC activity. α-Difluoromethylarginine and α-difluoromethylornithine (ADC and ODC inhibitor, respectively) did not inhibit but delayed the onset of germination of sunflower seeds, and α-difluoromethylornithine increased the content of spermidine and spermine. The present data suggest that polyamines could be involved in the germination process of H. annuus seeds and in response to salt stress. Received April 14, 1997; accepted July 10, 1997  相似文献   

14.
15.
Levels of putrescine, spermidine, and spermine and their biosynthetic enzymes, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) were measured in the developing rabbit palate between day 14 and day 18 of gestation. DNA, RNA, and protein synthesis were also measured during this time period to determine if a correlation exists between polyamine biogenesis and macromolecular synthesis. ODC activity was found to be twice as high on day 14 as on the succeeding days of gestation, while SAMDC activity did not change significantly. Levels of putrescine and spermine were higher on day 14 by 22% and 30%, respectively, than levels on day 18. Spermidine concentration did not change. DNA synthesis remained relatively constant between days 14 and 18 of gestation, suggesting that there is no peak in cell proliferation during this period. RNA synthesis was elevated significantly on day 14 and protein synthesis was significantly higher on both days 14 and 16. This data indicates that there is no correlation between polyamine synthesis and cell proliferation during this period of palatal development, but polyamines could play a regulatory role in RNA and/or protein synthesis.  相似文献   

16.
During the formation ofHelianthus tuberosus tubers the activities of arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC), examined in medullary parenchyma cells, increase with the increase in weight of the tuber. The ornithine decarboxylase (ODC) activity is about 100-fold less with respect to ADC activity, and it was detected only during the deceleration phase of the growth curve. Spermidine and spermine content are strictly related to the SAMDC activity and tuber growth. The increase of ADC and SAMDC activity is directly related to cell extension and increase in weight. The limited area of cell division in parenchyma tissue found during the first stage of tuber formation could justify the low ODC activity. The data suggest that ADC affects mainly growth processes, while ODC seems to be preferentially related to cell division.  相似文献   

17.
18.
Polyamine metabolism during the growth cycle of tobacco BY-2 cells.   总被引:7,自引:0,他引:7  
We studied polyamine (PA) biosynthesis, oxidation and conjugation in asynchronously dividing cells of tobacco BY-2 cell suspension culture (Nicotiana tabacum L.) during 7-day growth cycle. We analyzed the levels of free and conjugated PAs and the activities of biosynthetic and catabolic enzymes during the subculture interval. The contents of free spermidine and spermine started to increase after the inoculation into the fresh medium, positively correlated with the mitotic activity of BY-2 cells and reached their maxima at the beginning of exponential phase on day 3. On the contrary, the endogenous level of free Put showed a transient decline in the lag-phase, and then increased till the end of exponential phase (day 5). The time-course of the content of PCA-soluble conjugates showed a trend similar to that of the free PAs. The inoculation of BY-2 cells into the fresh medium resulted in a sharp increase in the activities of ornithine decarboxylase (ODC, EC 4.1.1.17) and S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50). Arginine decarboxylase (ADC; EC 4.1.1.19) activity remained low during the whole subculture interval. The rise of diamine oxidase (DAO; EC 1.4.3.6) in the first day after subculture coincided with the decrease in free Put level. De novo synthesis of PAs in BY-2 cells after inoculation into the fresh medium and the participation of both PA conjugation with hydroxycinnamic acids and Put oxidative degradation in maintaining of free PA levels during the growth cycle are discussed.  相似文献   

19.
The apparent involvement of ornithine decarboxylase (ODC) and putrescine in the early stages of fruit growth in tomato (Lycopersicon esculentum Mill.) has been previously described. Further evidence presented here supports the direct involvement of ODC and putrescine in the cell division process in tomato fruits. In tomato fruits grown in vitro, in which basic growth processes are inhibited, the activity of ODC and arginine decarboxylase (ADC) and the level of free polyamines were reduced. While ODC and ADC activity was correlated with the period of cell division in the tomato fruit, the free polyamine content was correlated with the DNA content, cell size, and fruit fresh weight. The addition of exogenous putrescine, however, did not restore the basic growth processes in the fruits grown in vitro.  相似文献   

20.
Both polyamines and kinetin could retard the loss of chlorophyll during dark-induced senescence in excised frond of Lernna aequinoctialis 6746. The effect of polyamines on retarding the chlorophyll loss was stronger than that of kinetin. Kinetin remarkably inhibited the loss of soluble proteins and the increase of protease activity, while no similar effects were observed from polyamines. An inhibitor of polyamine biosynthesis, methylglyoxal bis- (guanyl- hydrazone) (MGBG), slightly increased the loss of chlorophyll and soluble proteins. During senescience, both the increase of putrescine (Put) content and the decrease of spermidine (Spd) content were inhibited by kinetin at the concentration of 0.05 mmol/L, but the spermine (Spm) level was not affected by kinetin. The arginine decarboxylase (ADC) activity was dominant in frond of Lemna aequinoctialis 6746. Kinetin slightly increased ADC activity, while it had no marked effect on ornithine decarboxylase (ODC) and s-adenosylmethionine decarboxylase (SAMDC). The possible relationship between polyamines and cytokinins in retarding senescence was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号