首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host-parasite associations are shaped by coevolutionary dynamics. One example is the complex fungus-growing ant-microbe symbiosis, which includes ancient host-parasite coevolution. Fungus-growing ants and the fungi they cultivate for food have an antagonistic symbiosis with Escovopsis, a specialized microfungus that infects the ants' fungus gardens. The evolutionary histories of the ant, cultivar and Escovopsis are highly congruent at the deepest phylogenetic levels, with specific parasite lineages exclusively associating with corresponding groups of ants and cultivar. Here, we examine host-parasite specificity at finer phylogenetic levels, within the most derived clade of fungus-growing ants, the leaf-cutters (Atta spp. and Acromyrmex spp.). Our molecular phylogeny of Escovopsis isolates from the leaf-cutter ant-microbe symbiosis confirms specificity at the broad phylogenetic level, but reveals frequent host-switching events between species and genera of leaf-cutter ants. Escovopsis strains isolated from Acromyrmex and Atta gardens occur together in the same clades, and very closely related strains can even infect the gardens of both ant genera. Experimental evidence supports low host-parasite specificity, with phylogenetically diverse strains of Escovopsis being capable of overgrowing all leaf-cutter cultivars examined. Thus, our findings indicate that this host-pathogen association is shaped by the farming ants having to protect their cultivated fungus from phylogenetically diverse Escovopsis garden pathogens.  相似文献   

2.
MHC polymorphism under host-pathogen coevolution   总被引:9,自引:0,他引:9  
The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

3.
The symbiosis between fungus-farming ants (Attini, Formicidae), their cultivated fungi, garden-infecting Escovopsis pathogens, and Pseudonocardia bacteria on the ant integument has been popularized as an example of ant-Escovopsis-Pseudonocardia co-evolution. Recent research could not verify earlier conclusions regarding antibiotic-secreting, integumental Pseudonocardia that co-evolve to specifically suppress Escovopsis disease in an ancient co-evolutionary arms-race. Rather than long-term association with a single, co-evolving Pseudonocardia strain, attine ants accumulate complex, dynamic biofilms on their integument and in their gardens. Emerging views are that the integumental biofilms protect the ants primarily against ant diseases, whereas garden biofilms protect primarily against garden diseases; attine ants selectively recruit ('screen in') microbes into their biofilms; and the biofilms of ants and gardens serve diverse functions beyond disease-suppression.  相似文献   

4.
Almost all of the more than 200 species of fungus-growing ants (Formicidae: Attini) cultivate litter-decomposing fungi in the family Lepiotaceae (Basidiomycota: Agaricales). The single exception to this rule is a subgroup of ant species within the lower attine genus Apterostigma, which cultivate pterulaceous fungi distantly related to the Lepiotaceae. Comparison of cultivar and ant phylogenies suggests that a switch from lepiotaceous to pterulaceous fungiculture occurred only once in the history of the fungus-growing ants. This unique switch occurred after the origin of the genus Apterostigma, such that the basal Apterostigma lineages retained the ancestral attine condition of lepiotaceous fungiculture, and none of the Apterostigma lineages in the monophyletic group of pterulaceous fungiculturists are known to have reverted back to lepiotaceous fungiculture. The origin of pterulaceous fungiculture in attine ants may have involved a unique transition from the ancestral cultivation of litter-decomposing lepiotaceous fungi to the cultivation of wood-decomposing pterulaceous fungi. Phylogenetic analyses further indicate that distantly related Apterostigma ant species sometimes cultivate the same cultivar lineage, indicating evolutionarily frequent, and possibly ongoing, exchanges of fungal cultivars between Apterostigma ant species. The pterulaceous cultivars form two sister clades, and different Apterostigma ant lineages are invariably associated with, and thus specialized on, only one of the two cultivar clades. However, within clades Apterostigma ant species are able to switch between fungi. This pattern of broad specialization by attine ants on defined cultivar clades, coupled with flexible switching between fungi within cultivar clades, is also found in other attine lineages and appears to be a general phenomenon of fungicultural evolution in all fungus-growing ants.  相似文献   

5.
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.  相似文献   

6.
Comparisons of phylogenetic patterns between coevolving symbionts can reveal rich details about the evolutionary history of symbioses. The ancient symbiosis between fungus-growing ants, their fungal cultivars, antibiotic-producing bacteria and cultivar-infecting parasites is dominated by a pattern of parallel coevolution, where the symbionts of each functional group are members of monophyletic groups. However, there is one outstanding exception in the fungus-growing ant system, the unidentified cultivar grown only by ants in the Apterostigma pilosum group. We classify this cultivar in the coral-mushroom family Pterulaceae using phylogenetic reconstructions based on broad taxon sampling, including the first mushroom collected from the garden of an ant species in the A. pilosum group. The domestication of the pterulaceous cultivar is independent from the domestication of the gilled mushrooms cultivated by all other fungus-growing ants. Yet it has the same overall assemblage of coevolved ant-cultivar-parasite-bacterium interactions as the other ant-grown fungal cultivars. This indicates a pattern of convergent coevolution in the fungus-growing ant system, where symbionts with both similar and very different evolutionary histories converge to functionally identical interactions.  相似文献   

7.
We present the mathematical model for coevolution of root nodule bacteria (rhizobia) and leguminous plants which is based on the partners’ positive feedbacks resulted from their metabolic integration. The model parameters were introduced which determine: (1) coordinated changes in plant and bacterial population structures; (2) increase of fitness (reproductive potentials) in both partners as dependent on the symbiotic efficiency determined by proportion of N2-fixing rhizobia strain in root nodules. Computer experiments demonstrated that microevolution of the simulated system may follow either oscillatory or quasi-monotonous regime as dependent of frequency-dependent selection (FDS) in plant population. Negative FDS occurring in the bacterial population during competition for nodulation in combination with the positive partners’ feedback may lead to anchoring the bacterial mutations which lead either to acquisition of mutualistic traits or to changes in specificity of their expression. Anchoring of the mutualistic strains occurs most successfully in the quasi-monotonous regime and results in the improvement of genetic stability in symbiotic system.  相似文献   

8.
The fungus-growing ant-microbe mutualism is a classic example of organismal complexity generated through symbiotic association. The ants have an ancient obligate mutualism with fungi they cultivate for food. The success of the mutualism is threatened by specialized fungal parasites (Escovopsis) that consume the cultivated fungus. To defend their nutrient-rich garden against infection, the ants have a second mutualism with bacteria (Pseudonocardia), which produce antibiotics that inhibit the garden parasite Escovopsis. Here we reveal the presence of a fourth microbial symbiont associated with fungus-growing ants: black yeasts (Ascomycota; Phialophora). We show that black yeasts are commonly associated with fungus-growing ants, occurring throughout their geographical distribution. Black yeasts grow on the ants' cuticle, specifically localized to where the mutualistic bacteria are cultured. Molecular phylogenetic analyses reveal that the black yeasts form a derived monophyletic lineage associated with the phylogenetic diversity of fungus growers. The prevalence, distribution, localization and monophyly indicate that the black yeast is a fifth symbiont within the attine ant-microbe association, further exemplifying the complexity of symbiotic associations.  相似文献   

9.
Antagonistic coevolution is a critical force driving the evolution of diversity, yet the selective processes underpinning reciprocal adaptive changes in nature are not well understood. Local adaptation studies demonstrate partner impacts on fitness and adaptive change, but do not directly expose genetic processes predicted by theory. Specifically, we have little knowledge of the relative importance of fluctuating selection vs. arms-race dynamics in maintaining polymorphism in natural systems where metapopulation processes predominate. We conducted cross-year epidemiological, infection and genetic studies of multiple wild host and pathogen populations in the Linum-Melampsora association. We observed asynchronous phenotypic fluctuations in resistance and infectivity among demes. Importantly, changes in allelic frequencies at pathogen infectivity loci, and in host recognition of these genetic variants, correlated with disease prevalence during natural epidemics. These data strongly support reciprocal coevolution maintaining balanced resistance and infectivity polymorphisms, and highlight the importance of characterising spatial and temporal dynamics in antagonistic interactions.  相似文献   

10.
The results of long-term studies of coevolution in the Hordeum vulgare-Rhynchosporium secalis pathosystem are summarized. The genetic systems of barley (host) and R. secalis (pathogen) are complementary: Gene-for-gene interactions among loci affect many traits, leading to self-regulating adjustments over generations between host and pathogen populations. Different pathotypes differ widely in their ability to damage the host, and different host-resistance alleles differ widely in their ability to protect the host from the pathogen. Among 29 resistance loci in the specific host population studied, several played major roles in providing stable resistance, but many had net detrimental effects on the yield and reproductive ability of the host. Resistance alleles that protected against the most damaging pathotypes increased sharply in frequency in the host populations. It is concluded that the evolutionary processes that take place in genetically variable populations propagated under conditions of cultivation can be highly effective in increasing the frequency of desirable alleles and useful multilocus genotypes. This enhances the value of the evolving populations as sources of genetic variability in breeding for disease resistance and other characters that affect adaptedness.  相似文献   

11.
Reynolds HT  Currie CR 《Mycologia》2004,96(5):955-959
Fungi in the genus Escovopsis are known only from the fungus gardens of attine ants. Previous work has established that these anamorphic fungi, allied with the Hypocreales, are specialized and potentially virulent parasites of the ancient mutualism between attine ants and their fungal cultivars. It is unclear whether the primary nutrient source for the pathogen is the mutualist fungal cultivar or the vegetative substrate placed on the gardens by the ants. Here, we determine whether Escovopsis weberi is a parasite of the fungal cultivar, a competitor for the leaf substrate, or both. Bioassays reveal that E. weberi exhibits rapid growth on pure cultivar and negligible growth on sterilized leaf fragments. Light microscopy examination of hyphalhyphal interactions between E. weberi and the ant fungal cultivar indicate that E. weberi, unlike invasive necrotrophs that always penetrate host hyphae, can secrete compounds that break down host mycelium before contact occurs. Thus, E. weberi is a necrotrophic parasite of the fungal cultivar of attine ants.  相似文献   

12.
Fungus-growing ants, their cultivated fungi and the cultivar-attacking parasite Escovopsis coevolve as a complex community. Higher-level phylogenetic congruence of the symbionts suggests specialized long-term associations of host-parasite clades but reveals little about parasite specificity at finer scales of species-species and genotype-genotype interactions. By coupling sequence and amplified fragment length polymorphism genotyping analyses with experimental evidence, we examine (i) the host specificity of Escovopsis strains infecting colonies of three closely related ant species in the genus Cyphomyrmex, and (ii) potential mechanisms constraining the Escovopsis host range. Incongruence of cultivar and ant relationships across the three focal Cyphomyrmex spp. allows us to test whether Escovopsis strains track their cultivar or the ant hosts. Phylogenetic analyses demonstrate that the Escovopsis phylogeny matches the cultivar phylogeny but not the ant phylogeny, indicating that the parasites are cultivar specific. Cross-infection experiments establish that ant gardens can be infected by parasite strains with which they are not typically associated in the field, but that infection is more likely when gardens are inoculated with their typical parasite strains. Thus, Escovopsis specialization is shaped by the parasite's ability to overcome only a narrow range of garden-specific defences, but specialization is probably additionally constrained by ecological factors, including the other symbionts (i.e. ants and their antibiotic-producing bacteria) within the coevolved fungus-growing ant symbiosis.  相似文献   

13.
14.
The high diversity of HLA binding preferences has been driven by the sequence diversity of short segments of relevant pathogenic proteins presented by HLA molecules to the immune system. To identify possible commonalities in HLA binding preferences, we quantify these using a novel measure termed "targeting efficiency," which captures the correlation between HLA-peptide binding affinities and the conservation of the targeted proteomic regions. Analysis of targeting efficiencies for 95 HLA class I alleles over thousands of human proteins and 52 human viruses indicates that HLA molecules preferentially target conserved regions in these proteomes, although the arboviral Flaviviridae are a notable exception where nonconserved regions are preferentially targeted by most alleles. HLA-A alleles and several HLA-B alleles that have maintained close sequence identity with chimpanzee homologues target conserved human proteins and DNA viruses such as Herpesviridae and Adenoviridae most efficiently, while all HLA-B alleles studied efficiently target RNA viruses. These patterns of host and pathogen specialization are both consistent with coevolutionary selection and functionally relevant in specific cases; for example, preferential HLA targeting of conserved proteomic regions is associated with improved outcomes in HIV infection and with protection against dengue hemorrhagic fever. Efficiency analysis provides a novel perspective on the coevolutionary relationship between HLA class I molecular diversity, self-derived peptides that shape T-cell immunity through ontogeny, and the broad range of viruses that subsequently engage with the adaptive immune response.  相似文献   

15.
Sperm length evolution in the fungus-growing ants   总被引:1,自引:0,他引:1  
Eusocial insects offer special opportunities for the comparativestudy of sperm traits because sperm competition is absent (inspecies with obligatory monandry) or constrained (in lineageswhere queens mate multiply but never remate later in life).We measured sperm length in 19 species of fungus-growing ants,representing 9 of the 12 recognized genera, and mapped theseonto the ant phylogeny. We show that average sperm length acrossspecies is highly variable and decreases with mature colonysize in basal genera with singly mated queens, suggesting thatsperm production or storage constraints affect the evolutionof sperm length. Sperm length does not decrease further in multiplymating leaf-cutting ants, despite substantial further increasesin colony size. In a combined analysis, sexual dimorphism explained63.1% of the variance in sperm length between species. As colonysize was not a significant predictor in this analysis, we concludethat sperm production trade-offs in males have been the majorselective force affecting sperm length across the fungus-growingants, rather than storage constraints in females. The relationshipbetween sperm length and sexual dimorphism remained robust inphylogenetically independent contrasts. Some of the remainingvariation was explained by the relative size of the sperm-storageorgan, but only in the multiply mating leaf-cutting ants, suggestingthat sperm-storage constraints become important for the evolutionof sperm length in this derived group. Mate number affectedsperm length to a minor extent, and only in interaction withother predictor variables, suggesting that sperm competitionhas not been a major selective force for sperm length evolutionin these ants.  相似文献   

16.
Ethylene in host-pathogen relationships   总被引:1,自引:0,他引:1  
  相似文献   

17.
Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.  相似文献   

18.
19.
The development of novel anti-bacterial treatment strategies will be aided by an increased understanding of the interactions that take place between bacteria and host cells during infection. Global expression profiling using microarray technologies can help to describe and define the mechanisms required by bacterial pathogens to cause disease and the host responses required to defeat bacterial infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号