首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype.  相似文献   

4.
5.
6.
Seed germination plays a pivotal role during the life cycle of plants. As dry seeds imbibe water, the resumption of energy metabolism and cellular repair occur and miRNA-mediated gene expression regulation is involved in the reactivation events. This research was aimed at understanding the role of miRNA in the molecular control during seed imbibition process. Small RNA libraries constructed from dry and imbibed maize seed embryos were sequenced using the Illumina platform. Twenty-four conserved miRNA families were identified in both libraries. Sixteen of them showed significant expression differences between dry and imbibed seeds. Twelve miRNA families, miR156, miR159, miR164, miR166, miR167, miR168, miR169, miR172, miR319, miR393, miR394 and miR397, were significantly down-regulated; while four families, miR398, miR408, miR528 and miR529, were significantly up-regulated in imbibed seeds compared to that in dry seeds. Furthermore, putative novel maize miRNAs and their target genes were predicted. Target gene GO analysis was performed for novel miRNAs that were sequenced more than 50 times in the normalized libraries. The result showed that carbohydrate catabolic related genes were specifically enriched in the dry seed, while in imbibed seed target gene enrichment covered a broad range of functional categories including genes in amino acid biosynthesis, isomerase activity, ligase activity and others. The sequencing results were partially validated by quantitative RT-PCR for both conserved and novel miRNAs and the predicted target genes. Our data suggested that diverse and complex miRNAs are involved in the seed imbibition process. That miRNA are involved in plant hormone regulation may play important roles during the dry-imbibed seed transition.  相似文献   

7.
Successful reproduction of flowering plants requires the appropriate timing of the floral transition, as triggered by environmental and internal cues and as regulated by multiple signaling modules. Among these modules, microRNAs (miRNAs), the evolutionarily conserved regulators, respond to environmental and internal cues and network with other integrators of flowering cues. Moreover, miRNA signaling modules affect the timing of flowering in many plant species. Here, we comprehensively review recent progress in understanding the function of miRNAs and their target genes in flowering time regulation in diverse plant species. We focus on the role of the miRNA-target gene modules in various flowering pathways and their conserved and divergent functions in flowering plants. We also examine, in depth, the crosstalk by sequential activity of miR156 and miR172, two of the most-studied and evolutionarily conserved miRNAs in both annual and perennial plants.  相似文献   

8.
In plants, the silencing efficacy of microRNAs (miRNAs) is thought to be predominantly determined by the degree of complementarity to their target genes. Here, silencing efficacy was determined for Arabidopsis miR159 and four artificial miRNAs (amiRNAs) that all target MYB33/MYB65 with analogous complementarities. As determined through complementation of a loss-of-function mir159 mutant, the amiRNAs displayed highly variable efficacies, none of which was as strong as endogenous miR159. This was despite amiRNA expression levels being many fold-higher than miR159 in wild-type. The results highlight the variable nature of miRNA silencing efficacy in plants, where it appears that factors additional to complementarity strongly impact silencing.  相似文献   

9.
10.
11.
12.
13.
Flowering is the primary trait affected by ambient temperature changes. Plant microRNAs (miRNAs) are small non-coding RNAs playing an important regulatory role in plant development. In this study, to elucidate the mechanism of flowering-time regulation by small RNAs, we identified six ambient temperature-responsive miRNAs (miR156, miR163, miR169, miR172, miR398 and miR399) in Arabidopsis via miRNA microarray and northern hybridization analyses. We also determined the expression profile of 120 unique miRNA loci in response to ambient temperature changes by miRNA northern hybridization analysis. The expression of the ambient temperature-responsive miRNAs and their target genes was largely anticorrelated at two different temperatures (16 and 23°C). Interestingly, a lesion in short vegetative phase (SVP), a key regulator within the thermosensory pathway, caused alteration in the expression of miR172 and a subset of its target genes, providing a link between a thermosensory pathway gene and miR172. The miR172-overexpressing plants showed a temperature-independent early flowering phenotype, suggesting that modulation of miR172 expression leads to temperature insensitivity. Taken together, our results suggest a genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs under non-stress temperature conditions.  相似文献   

14.
High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here, we identified 14 stress-inducible miRNAs using microarray data in which the effects of three abiotic stresses were surveyed in Arabidopsis thaliana. Among them, 10 high-salinity-, four drought-, and 10 cold-regulated miRNAs were detected, respectively. miR168, miR171, and miR396 responded to all of the stresses. Expression profiling by RT-PCR analysis showed great cross-talk among the high-salinity, drought, and cold stress signaling pathways. The existence of stress-related elements in miRNA promoter regions provided further evidence supporting our results. These findings extend the current view about miRNA as ubiquitous regulators under stress conditions.  相似文献   

15.
16.
Zhao M  Tai H  Sun S  Zhang F  Xu Y  Li WX 《PloS one》2012,7(1):e29669
Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. We discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported 150 high confidence genes within 26 miRNA families in maize. Bioinformatic and subsequent small RNA northern blot analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition. Predicted and degradome-validated targets of the newly identified miRNAs suggest their involvement in a broad range of cellular responses and metabolic processes. Because maize is not only an important crop but is also a genetic model for basic biological research, our research contributes to the understanding of the regulatory roles of miRNAs in plant adaption to N-deficiency stress.  相似文献   

17.
18.
19.
20.
MicroRNAs (miRNAs) regulate various developmental programs of plants. This review focuses on miRNA involvement in early events of plant development, such as seed germination, seedling development and the juvenile to adult phase transition. miR159 and miR160 are involved in the regulation of seed germination through their effects on the sensitivity of seeds to ABA. miR156 and miR172 play critical roles in the emergence of vegetative leaves at post-germinative stages, which is important for the transition to autotrophic growth. The phase transition from the juvenile to adult stage in both monocots and dicots is also regulated by miR156 and miR172. In these early developmental processes, there are miRNA gene regulation cascades where the miR156 pathway acts upstream of the miR172 pathway. Moreover, targets of miR156 and miR172 exert positive feedback on the expression of MIR genes that suppress themselves. The early events of plant development appear to be controlled by complex mechanisms involving sequential expression of different miRNA pathways and feedback loops among miRNAs and their target genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号