首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial–mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs.  相似文献   

2.
Among many signals to regulate hypoxia inducible factor 1α (HIF-1α), sphingosine kinase 1 (SPHK1) is also involved in various biological activities such as cell growth, survival, invasion, angiogenesis, and carcinogenesis. Thus, in the present study, molecular mechanisms of coumestrol were investigated on the SPHK1 and HIF-1α signaling pathway in hypoxic PC-3 prostate cancer cells. Coumestrol significantly suppressed SPHK1 activity and accumulation of HIF-1α in a time- and concentration-dependent manner in hypoxic PC-3 cells. In addition, coumestrol inhibited the phosphorylation status of AKT and glycogen synthase kinase-3β (GSK 3β) signaling involved in cancer metabolism. Furthermore, SPHK1 siRNA transfection, sphigosine kinase inhibitor (SKI), reactive oxygen species (ROS) enhanced the inhibitory effect of coumestrol on the accumulation of HIF-1α and the expression of pAKT and pGSK 3β in hypoxic PC-3 cells by combination index. Overall, our findings suggest that coumestrol suppresses the accumulation of HIF-1α via suppression of SPHK1 pathway in hypoxic PC-3 cells.  相似文献   

3.
Hypoxia is a common environmental stress. Particularly, the center of rapidly-growing solid tumors is easily exposed to hypoxic conditions. Hypoxia is well known to attenuate the therapeutic response to radio and chemotherapies including tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) protein. HIF-1α is a critical mediator of the hypoxic response. However, little is known about the function of hypoxia-inducible factor-1α (HIF-1α) on hypoxic inhibition of TRAIL-mediated apoptosis. In this study, we investigated whether hypoxic inhibition of TRAIL-mediated apoptosis can be regulated by modulating HIF-1α protein. Hypoxia- and DEF-induced HIF-1α activation inhibited the TRAIL-mediated apoptosis in SK-N-SH, HeLa, A549 and SNU-638 cells. And also, HIF-1α inactivating reagents including DOX increased the sensitivity to TRAIL protein in tumor cells exposed to hypoxia. Furthermore, knock-down of HIF-1α using lentiviral RNA interference sensitized tumor cells to TRAIL-mediated cell death under hypoxic condition. Taken together, these results indicate that HIF-1α inactivation increased TRAIL sensitivity in hypoxia-induced TRAIL-resistant tumor cells and also suggest that HIF-1α inhibitors may have benefits in combination therapy with TRAIL against hypoxic tumor cells.  相似文献   

4.
Cheng ZX  Sun B  Wang SJ  Gao Y  Zhang YM  Zhou HX  Jia G  Wang YW  Kong R  Pan SH  Xue DB  Jiang HC  Bai XW 《PloS one》2011,6(8):e23752

Background

Epithelial to mesenchymal transition (EMT) induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.

Methodology/Principal Findings

Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.

Conclusions/Significance

These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.  相似文献   

5.

Background

Hypoxia inducible factor-1α (HIF-1α) is responsible for the majority of HIF-1-induced gene expression changes under hypoxia and for the “angiogenic switch” during tumor progression. HIF-1α is often upregulated in tumors leading to more aggressive tumor growth and chemoresistance, therefore representing an important target for antitumor intervention. We previously reported that zinc downregulated HIF-1α levels. Here, we evaluated the molecular mechanisms of zinc-induced HIF-1α downregulation and whether zinc affected HIF-1α also in vivo.

Methodology/Principal Findings

Here we report that zinc downregulated HIF-1α protein levels in human prostate cancer and glioblastoma cells under hypoxia, whether induced or constitutive. Investigations into the molecular mechanisms showed that zinc induced HIF-1α proteasomal degradation that was prevented by treatment with proteasomal inhibitor MG132. HIF-1α downregulation induced by zinc was ineffective in human RCC4 VHL-null renal carcinoma cell line; likewise, the HIF-1αP402/P564A mutant was resistant to zinc treatment. Similarly to HIF-1α, zinc downregulated also hypoxia-induced HIF-2α whereas the HIF-1β subunit remained unchanged. Zinc inhibited HIF-1α recruitment onto VEGF promoter and the zinc-induced suppression of HIF-1-dependent activation of VEGF correlated with reduction of glioblastoma and prostate cancer cell invasiveness in vitro. Finally, zinc administration downregulated HIF-1α levels in vivo, by bioluminescence imaging, and suppressed intratumoral VEGF expression.

Conclusions/Significance

These findings, by demonstrating that zinc induces HIF-1α proteasomal degradation, indicate that zinc could be useful as an inhibitor of HIF-1α in human tumors to repress important pathways involved in tumor progression, such as those induced by VEGF, MDR1, and Bcl2 target genes, and hopefully potentiate the anticancer therapies.  相似文献   

6.
7.
8.
9.
Lu Y  Li X  Lu H  Fan Z 《PloS one》2010,5(12):e15823
Cetuximab, a monoclonal antibody that blocks the epidermal growth factor receptor (EGFR), is currently approved for the treatment of several types of solid tumors. We previously showed that cetuximab can inhibit hypoxia-inducible factor-1 alpha (HIF-1α) protein synthesis by inhibiting the activation of EGFR downstream signaling pathways including Erk, Akt, and mTOR. 1, 9-pyrazoloanthrone (1, 9 PA) is an anthrapyrazolone compound best known as SP600125 that specifically inhibits c-jun N-terminal kinase (JNK). Here, we report 1, 9 PA can downregulate HIF-1α independently of its inhibition of JNK. This downregulatory effect was abolished when the oxygen-dependent domain (ODD) of HIF-1α (HIF-1α-ΔODD, the domain responsible for HIF-1α degradation) was experimentally deleted or when the activity of HIF-1α prolyl hydroxylase (PHD) or the 26S proteasomal complex was inhibited, indicating that the 1, 9 PA downregulates HIF-1α by promoting PHD-dependent HIF-1α degradation. We found that the combination of 1, 9 PA and cetuximab worked synergistically to induce apoptosis in cancer cells in which cetuximab or 1, 9 PA alone had no or only weak apoptotic activity. This synergistic effect was substantially decreased in cancer cells transfected with HIF-1α-ΔODD, indicating that downregulation of HIF-1α was the mechanism of this synergistic effect. More importantly, 1, 9 PA can downregulate HIF-1α in cancer cells that are insensitive to cetuximab-induced inhibition of HIF-1α expression due to overexpression of oncogenic Ras (RasG12V). Our findings suggest that 1, 9 PA is a lead compound of a novel class of drugs that may be used to enhance the response of cancer cells to cetuximab through a complementary effect on the downregulation of HIF-1α.  相似文献   

10.
BackgroundIL-δ (5-hydroxy-6 iodo-8,11,14-eicosatrienoic delta lactone) an iodinated arachidonic acid (AA) derivative, is one of the iodolipids biosynthesized by the thyroid. Although IL-δ regulates several thyroid parameters such as cell proliferation and goiter growth it was found that this iodolipid inhibits the growth of other non thyroid cell lines.ObjectivesTo study the effect of IL-δ on cell proliferation and apoptosis in the colon cancer cell line HT-29.ResultsTreatment with IL-δ reduced cell viability in a concentration-dependent manner: 1 μM 20%, 5 μM 25%, 10 μM 31%, 50 μM 47% and caused a significant decrease of PCNA expression (25%). IL-δ had pro-apoptotic effects, evidenced by morphological features of programmed cell death such as pyknosis, karyorrhexis, cell shrinkage and cell blebbing observed by fluorescence microscopy, and an increase in caspase-3 activity and in Bax/Bcl-2 ratio (2.5 after 3 h of treatment). Furthermore, IL-δ increased ROS production (30%) and lipid peroxidation levels (19%), suggesting that apoptosis could be a result of increased oxidative stress. A maximum increase in c-fos and c-jun protein expression in response to IL-δ was observed 1 h after initiation of the treatment. IL-δ also induced a tumour growth delay of 70% compared to the control group in NIH nude mice implanted with HT-29 cells.ConclusionOur study shows that IL-δ inhibits cell growth and induces apoptosis in the colon cancer cell line, HT-29 and opens the possibility that IL-δ could be a potential useful chemotherapy agent.  相似文献   

11.
12.
13.
The hypoxia-inducible factors HIF-1 and HIF-2 are primarily regulated via stabilization of their respective α-subunits under hypoxic conditions. Previously, compensatory upregulation of one HIF-α-subunit upon depletion of the other α-subunit was described, yet the underlying mechanism remained elusive. Here we provide evidence that enhanced HIF-1α protein expression in HIF-2α knockdown (k/d) cells neither results from elevated HIF-1α mRNA expression, nor from increased HIF-1α protein stability. Instead, we identify enhanced HIF-1α translation as molecular mechanism. Moreover, we found elevated levels of the RNA-binding protein HuR and provide evidence that HuR is critical for the compensatory HIF-1α regulation in HIF-2α k/d cells.  相似文献   

14.
15.
16.
17.
Vascularized tumors are exposed to intermittent hypoxia, that is, hypoxia followed by periods of reoxygenation. Abnormal structure and dysfunction of tumor blood vessels are responsible for these conditions. These repeated short periods of hypoxia concern tumor cells as well as endothelial cells. However, the effects of intermittent hypoxia are poorly understood. The aim of this study was to investigate the effects of intermittent hypoxia on endothelial cells and particularly on HIF-1α, a central actor in adaptive response to hypoxia. For that, endothelial cells were exposed to four repeated cycles of 1-h hypoxia followed by 30 min of reoxygenation. We showed that repeated cycles of hypoxia/reoxygenation induced a modification in HIF-lα phosphorylation pattern: a progressive increase in HIF-1α phosphorylated form was observed during the hypoxic periods. Activation of p42/p44, Akt and PKA was observed in parallel. PKA was shown to be involved in the phosphorylation of HIF-lα under intermittent hypoxia, while p42/p44 and Akt were not. As HIF-1 activity is often associated with enhanced cell survival, a better knowledge of the effects of intermittent hypoxia on endothelial cells and the highlight of particular mechanisms induced by intermittent hypoxia are essential to understand the behavior of endothelial cells during neo-angiogenesis.  相似文献   

18.
19.
Fluctuations in cellular oxygenation causing intermittent hypoxia and oxidative stress affect the regulation of hypoxia-inducible factor (HIF-1) and the nuclear factor erythroid 2-related factor 2 (Nrf2). HIF-1 is primarily induced in hypoxia, whereas Nrf2 is induced in response to oxidative stress. Whereas HIF-1 regulates the expression of genes important for the adaptation of cells to hypoxia, Nrf2 induces antioxidative enzymes such as thioredoxin 1 (Trx1), exerting a cytoprotective role. Here, we investigated the regulation and cross talk of HIF-1α and Nrf2 in intermittent hypoxia in lung adenocarcinoma A549 cells expressing high levels of the NADPH oxidase subunit NOX1. Whereas continuous hypoxia induced only HIF-1α, intermittent hypoxia induced both HIF-1α and Nrf2, including its target Trx1. NOX1 was determined to be crucial for enhanced ROS production in intermittent hypoxia that in turn mediated induction of Nrf2 and Trx1. The regulation of Nrf2 and Trx1 by NOX1 was confirmed by both inhibition of endogenous NOX1 and overexpression of recombinant NOX1 protein. By using a proteasomal inhibitor, NOX1 was demonstrated to activate Nrf2 by protein stabilization. Subsequently, Nrf2-dependent Trx1 induction turned out to enhance HIF-1α signaling in intermittent hypoxia.  相似文献   

20.
On the basis of increasing roles for HDM2 oncoprotein in cancer growth and progression, we speculated that HDM2 might play a major role in hypoxia-induced metastatic process. For verification of this hypothesis, wild-type LNCaP prostate cancer cells and HDM2 transfected LNCaP-MST (HDM2 stably transfected) cells were studied. The data obtained from our experiments revealed that the HDM2 transfected LNCaP-MST cells possessed an ability to multiply rapidly and show distinct morphological features compared to non-transfected LNCaP cells. During exposures to hypoxia HDM2 expression in the LNCaP and LNCaP-MST cells was significantly higher compared to the normoxic levels. The LNCaP-MST cells also expressed higher levels of HIF-1α (hypoxia-inducible factor-1α) and p-STAT3 even under the normoxic conditions compared to the non-transfected cells. The HIF-1α and p-STAT3 expressions were increased several fold when the cells were subjected to hypoxic conditions. The HIF-1α and p-STAT3 protein expressions observed in HDM2 transfected LNCaP-MST cells were 20 and 15 folds higher, respectively, compared to the non-transfected wild-type LNCaP cells. These results demonstrate that HDM2 may have an important regulatory role in mediating the HIF-1α and p-STAT3 protein expression during both normoxic and hypoxic conditions. Furthermore, the vascular endothelial growth factor (VEGF) expression that is typically regulated by HIF-1α and p-STAT3 was also increased significantly by 136% (P < 0.01) after HDM2 transfection. The overall results point towards a novel ability of HDM2 in regulating HIF-1α and p-STAT3 levels even in normoxic conditions that eventually lead to an up-regulation of VEGF expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号