首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hispid cotton rat, Sigmodon hispidus, is a common rodent widely distributed across the southern USA and south into South America. To characterize major histocompatibility complex (MHC) diversity in this species and to elucidate large-scale patterns of genetic partitioning, we examined MHC genetic variability within and among 13 localities, including a disjunct population in Arizona and a population from Costa Rica that may represent an undescribed species. We also tested the hypothesis that populations within the USA are at equilibrium with regard to gene flow and genetic drift, resulting in isolation-by-distance. Using single-strand conformation polymorphism (SSCP) analysis we identified 25 alleles from 246 individuals. Gene diversity within populations ranged from 0.000 to 0.908. Analysis of molecular variance (AMOVA) revealed that 83.7% of observed variation was accounted for by within-population diversity and 16.3% was accounted for by among-population divergence. The disjunct population in Arizona was fixed for a single allele. The Costa Rican population was quite divergent based on allelic composition and was the only population with unique alleles. Within the main portion of the geographical distribution of S. hispidus in the USA there was considerable divergence among some populations; however, there was no significant pattern of isolation-by-distance overall (P = 0.090). Based on the significant divergence of the only sampled population to its east, the Mississippi River appears to represent a substantial barrier to gene flow.  相似文献   

2.
The major histocompatibility complex (MHC) is a key model of genetic polymorphism, but the mechanisms underlying its extreme variability are debated. Most hypotheses for MHC diversity focus on pathogen-driven selection and predict that MHC polymorphism evolves under the pressure of a diverse parasite fauna. Several studies reported that certain alleles offer protection against certain parasites, yet it remains unclear whether variation in parasite pressure more generally covaries with allelic diversity and rates of molecular evolution of MHC across species. We tested this prediction in a comparative study of 41 primate species. We characterized polymorphism of the exon 2 of DRB region of the MHC class II. Our phylogenetic analyses controlled for the potential effects of neutral mutation rate, population size, geographic origin and body mass and revealed that nematode species richness associates positively with nonsynonymous nucleotide substitution rate at the functional part of the molecule. We failed to find evidence for allelic diversity being strongly related to parasite species richness. Continental distribution was a strong predictor of both allelic diversity and substitution rate, with higher values in Malagasy and Neotropical primates. These results indicate that parasite pressure can influence the different estimates of MHC polymorphism, whereas geography plays an independent role in the natural history of MHC.  相似文献   

3.
The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next‐generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide‐binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high‐frequency segregating sites (average Tajima's D = 2.36, < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non‐passerine bird.  相似文献   

4.
The fragmentation of populations typically enhances depletion of genetic variation, but highly polymorphic major histocompatibility complex (MHC) genes are thought to be under balancing selection and therefore retain polymorphism despite population bottlenecks. In this study, we investigate MHC DRB (class II) exon 2 variation in 14 spotted suslik populations from two regions differing in their degree of habitat fragmentation and gene flow. We found 16 alleles that segregated in a sample of 248 individuals. The alleles were highly divergent and revealed the hallmark signs of positive selection acting on them in the past, showing a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, which suggests that past selection was driven by pathogens. MHC diversity was significantly lower in fragmented western populations than in the eastern populations, characterized by significant gene flow. In contrast to neutral variation, amova did not reveal genetic differentiation between the two regions. This may indicate similar selective pressures shaping MHC variation in both regions until the recent past. However, MHC allelic richness within a population was correlated with that for microsatellites. FST outlier analyses have shown that population differentiation at DRB was neither higher nor lower than expected under neutrality. The results suggest that selection on MHC is not strong enough to counteract drift that results from recent fragmentation of spotted suslik populations.  相似文献   

5.

Background  

The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them.  相似文献   

6.
Habitat fragmentation inhibits gene flow between populations often resulting in a loss of genetic diversity with possible negative effects on fitness parameters. In vertebrates, growing evidence suggests that such genetic diversity is particularly important at the level of the major histocompatibility complex (MHC) because its gene products play an important role in immune functions. Diversity in the MHC is assumed to improve population viability. Here, we investigated the impact of forest fragmentation on the genetic variability of one of the functionally important parts of the MHC, DRB exon 2, of the endemic mouse lemur Microcebus murinus by comparing populations inhabiting two littoral forest fragments of different size in southeastern Madagascar. Twelve different alleles of DRB exon 2 were found in 145 individuals of M. murinus with high levels of sequence divergence between alleles. In both subpopulations, levels of genetic diversity were high, and the genetic analyses revealed only limited effects of fragmentation. Significantly more non-synonymous than synonymous substitutions were found in the functionally important antigen recognition and binding sites indicating selection processes maintaining MHC polymorphism. This is the first study on MHC variation in a free-ranging Malagasy lemur population.  相似文献   

7.
Schad J  Dechmann DK  Voigt CC  Sommer S 《Heredity》2011,107(2):115-126
Genes of the major histocompatibility complex (MHC) have a crucial role in the immune response of vertebrates, alter the individual odour and are involved in shaping mating preferences. Pathogen-mediated selection, sexual selection and maternal-fetal interactions have been proposed as the main drivers of frequently observed high levels of polymorphism in functionally important parts of the MHC. Bats constitute the second largest mammalian order and have recently emerged as important vectors of infectious diseases. In addition, Chiroptera are interesting study subjects in evolutionary ecology in the context of olfactory communication, mate choice and associated fitness benefits. Thus, it is surprising that they belong to the least studied mammalian taxa in terms of their MHC diversity. In this study, we investigated the variability in the functionally important MHC class II gene DRB, evidence for selection and population structure in the group-living lesser bulldog bat, Noctilio albiventris, in Panama. We found a single expressed, polymorphic Noal-DRB gene. The substitution pattern of the nucleotide sequences of the 18 detected alleles provided evidence for positive selection acting above the evolutionary history of the species in shaping MHC diversity. Roosting colonies were not genetically differentiated but females showed lower levels of heterozygosity than males, which might be a sign that the sexes differ in the selection pressures acting on the MHC. This study provides the prerequisites for further investigations of the role of the individual MHC constitution in parasite resistance, olfactory communication and mate choice in N. albiventris and other bats.  相似文献   

8.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.  相似文献   

9.
ABSTRACT: BACKGROUND: The major histocompatibility complex (MHC) is an important component of the vertebrate immune system and is frequently used to characterise adaptive variation in wild populations due to its co-evolution with pathogens. Passerine birds have an exceptionally diverse MHC with multiple gene copies and large numbers of alleles compared to other avian taxa. The Nesospiza bunting species complex (two species on Nightingale Island; one species with three sub-species on Inaccessible Island) represents a rapid adaptive radiation at a small, isolated archipelago, and is thus an excellent model for the study of adaptation and speciation. In this first study of MHC in Nesospiza buntings, we aim to characterize MHCIIbeta variation, determine the strength of selection acting at this gene region and assess the level of shared polymorphism between the Nesospiza species complex and its putative sister taxon, Rowettia goughensis, from Gough Island. RESULTS: In total, 23 unique alleles were found in 14 Nesospiza and 2 R. goughensis individuals encoding at least four presumably functional loci and two pseudogenes. There was no evidence of ongoing selection on the peptide binding region (PBR). Of the 23 alleles, 15 were found on both the islands inhabited by Nesospiza species, and seven in both Nesospiza and Rowettia; indications of shared, ancestral polymorphism. A gene tree of Nesospiza MHCIIbeta alleles with several other passerine birds shows three highly supported Nesospiza-specific groups. All R. goughensis alleles were shared with Nesospiza, and these alleles were found in all three Nesospiza sequence groups in the gene tree, suggesting that most of the observed variation predates their phylogenetic split. CONCLUSIONS: Lack of evidence of selection on the PBR, together with shared polymorphism across the gene tree, suggests that population variation of MHCIIbeta among Nesospiza and Rowettia is due to ancestral polymorphism rather than local selective forces. Weak or no selection pressure could be attributed to low parasite load at these isolated Atlantic islands. The deep divergence between the highly supported Nesospiza-specific sequence Groups 2 and 3, and the clustering of Group 3 close to the distantly related passerines, provide strong support for preserved ancestral polymorphism, and present evidence of one of the rare cases of extensive ancestral polymorphism in birds.  相似文献   

10.
The genes of the major histocompatibility complex (MHC) are a central component of the immune system in vertebrates and have become important markers of functional, fitness-related genetic variation. We have investigated the evolutionary processes that generate diversity at MHC class I genes in a large population of an archaic reptile species, the tuatara (Sphenodon punctatus), found on Stephens Island, Cook Strait, New Zealand. We identified at least 2 highly polymorphic (UA type) loci and one locus (UZ) exhibiting low polymorphism. The UZ locus is characterized by low nucleotide diversity and weak balancing selection and may be either a nonclassical class I gene or a pseudogene. In contrast, the UA-type alleles have high nucleotide diversity and show evidence of balancing selection at putative peptide-binding sites. Twenty-one different UA-type genotypes were identified among 26 individuals, suggesting that the Stephens Island population has high levels of MHC class I variation. UA-type allelic diversity is generated by a mixture of point mutation and gene conversion. As has been found in birds and fish, gene conversion obscures the genealogical relationships among alleles and prevents the assignment of alleles to loci. Our results suggest that the molecular mechanisms that underpin MHC evolution in nonmammals make locus-specific amplification impossible in some species.  相似文献   

11.
The existence and nature of indirect genetic benefits to mate choice remain contentious. Major histocompatibility complex (MHC) genes, which play a vital role in determining pathogen resistance in vertebrates, may be the link between mate choice and the genetic inheritance of vigour in offspring. Studies have shown that MHC-dependent mate choice can occur in mammal and fish species, but little work has focused on the role of the MHC in birds. We tested for MHC-dependent mating patterns in the Seychelles warbler (Acrocephalus sechellensis). There was no influence of MHC class I exon 3 variation on the choice of social mate. However, females were more likely to obtain extra-pair paternity (EPP) when their social mate had low MHC diversity, and the MHC diversity of the extra-pair male was significantly higher than that of the cuckolded male. There was no evidence that females were mating disassortatively, or that they preferred males with an intermediate number of MHC bands. Overall, the results are consistent with the 'good genes' rather than the 'genetic compatibility' hypothesis. As female choice will result in offspring of higher MHC diversity, MHC-dependent EPP may provide indirect benefits in the Seychelles warbler if survival is positively linked to MHC diversity.  相似文献   

12.
Sequence variation at a major histocompatibility complex (MHC) gene, assumed to be involved in parasite and pathogen resistance, was examined in the endangered Gila topminnow (Poeciliopis o. occidentalis), from the four watersheds where they remain in the United States. This is the first estimate of variation in MHC genes in natural populations of an endangered species. The population that has experienced the most bottlenecks historically was monomorphic for MHC variation. Another population, which earlier had been found to be the only population polymorphic for allozymes, had five MHC alleles, four different from those found in the other populations. Overall, nine different alleles were found. The four populations were highly divergent at MHC with four of the six population pairs not sharing any alleles. However, the magnitude of differentiation between populations on the amino-acid level varied fivefold for the populations that shared no alleles. Using single-stranded conformational polymorphism (SSCP), these alleles segregated consistently with Mendelian expectations in families. Because of the high genetic differentiation between these populations for a potentially adaptive gene, we recommend that the four watersheds be examined further for separate conservation and management.  相似文献   

13.
The Swedish moose was analysed for genetic variability at major histocompatibility complex (MHC) class I and class II DQA, DQB and DRB loci using restriction fragment length polymorphism (RFLP) and single strand conformation polymorphism (SSCP) techniques. Both methods revealed limited amounts of polymorphism. Since the SSCP analysis concerned an expressed DRB gene it can be concluded that the level of functional MHC class II polymorphism, at least at the DRB locus, is low in Swedish moose. DNA fingerprinting was used to determine if the unusual pattern of low MHC variability could be explained by a low degree of genome-wide genetic diversity. Hybridizations with two minisatellite probes gave similarity indices somewhat higher than the average for other natural population, but the data suggest that the low MHC variability cannot be explained by a recent population bottleneck. However, since minisatellite sequences evolve more rapidly than MHC sequences, the low levels of MHC diversity may be attributed to a bottleneck of more ancient origin. The selection pressure for MHC variability in moose may also be reduced and we discuss the possibility that its solitary life style may reduce lateral transmission of pathogens in the population.  相似文献   

14.
The major histocompatability complex (MHC) is a multigene family of receptors that bind and present antigenic peptides to T-cells. Genes of the MHC are characterized by an outstanding genetic polymorphism, which is considered to be maintained by positive selection. Sites involved in peptide binding form binding pockets (P) that are collectively termed the peptide-binding region (PBR). In this study, we examined the level of MHC genetic diversity within and among natural populations of brown hare ( Lepus europaeus ) from Europe and Anatolia choosing for analysis of the second exon of the DQA locus, one of the most polymorphic class II loci. We aimed at an integrated population genetic analysis of L. europeaus by (i) correlating MHC polymorphism to genetic variability and phylogenetic status estimated previously from maternally (mtDNA) and biparentally (allozymes, microsatellites) inherited loci; and (ii) comparing full-length exon amino acid polymorphism with functional polymorphism in the PBR and the binding pockets P1, P6 and P9. A substantial level of DQA exon 2 polymorphism was detected with two completely different set of alleles between the Anatolian and European populations. However, the phylogeny of full-length exon 2 Leeu-DQA alleles did not show a strong phylogeographic signal. The presence of balancing selection was supported by a statistically significant excess of nonsynonymous substitutions over synonymous in the PBR and a trans-species pattern of evolution detected after phylogenetic reconstruction. The differentiating patterns detected between genetic and functional polymorphism, i.e. the number and the distribution of pocket variants within and among populations, indicated a hierarchical action of selection pressures.  相似文献   

15.
Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism.In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic factors may contribute to MHC variation on a short time scale.  相似文献   

16.
Genes of the major histocompatibility complex (MHC) have been studied for several decades because of their pronounced allelic polymorphism. Structural allelic polymorphism is, however, not the only source of variability subjected to natural selection. Genetic variation may also exist in gene expression patterns. Here, we show that in a natural population of three-spined sticklebacks (Gasterosteus aculeatus) the expression of MHC class IIB genes was positively correlated with parasite load, which indicates increased immune activation of the MHC when infections are frequent. To experimentally study MHC expression, we used laboratory-bred sticklebacks that were exposed to three naturally occurring species of parasite. We found strong differences in MHC class IIB expression patterns among fish families, which were consistent over two generations, thus demonstrating a genetic component. The average number of MHC class IIB sequence variants within families was negatively correlated to the MHC expression level suggesting compensatory up-regulation in fish with a low (i.e. suboptimal) MHC sequence variability. The observed differences among families and the negative correlation with individual sequence diversity imply that MHC expression is evolutionary relevant for the onset and control of the immune response in natural populations.  相似文献   

17.
Hymenaea courbaril is a tropical timber species, intensely exploited and found in the Amazon, Atlantic Forest and Brazilian Cerrado biome. Nine highly polymorphic microsatellite loci were developed from a genomic library enriched for AG/TC repeats. In a total of 41 individuals, from two natural populations, seven to 13 alleles per locus were detected and expected heterozygosity ranged from 0.75 to 0.90. Seven loci were effectively transferred to Hymenaea stigonocarpa. High levels of polymorphism make the present primers useful for population genetic studies and are a powerful tool to investigate mating system, gene flow and spatial genetic structure.  相似文献   

18.
Among bird species, the most studied major histocompatibility complex (MHC) is the chicken MHC. Although the number of studies on MHC in free-ranging species is increasing, the knowledge on MHC variation in species closely related to chicken is required to understand the peculiarities of bird MHC evolution. Here we describe the variation of MHC class IIB (MHCIIB) exon 2 in a population of the Grey partridge (Perdix perdix), a species of high conservation concern throughout Europe and an emerging galliform model in studies of sexual selection. We found 12 alleles in 108 individuals, but in comparison to other birds surprisingly many sites show signatures of historical positive selection. Individuals displayed between two to four alleles both on genomic and complementary DNA, suggesting the presence of two functional MHCIIB loci. Recombination and gene conversion appear to be involved in generating MHCIIB diversity in the Grey partridge; two recombination breakpoints and several gene conversion events were detected. In phylogenetic analysis of galliform MHCIIB, the Grey partridge alleles do not cluster together, but are scattered through the tree instead. Thus, our results indicate that the Grey partridge MHCIIB is comparable to most other galliforms in terms of copy number and population polymorphism.  相似文献   

19.
Xu TJ  Sun YN  Wang RX 《Marine Genomics》2010,3(2):117-123
Allelic polymorphism and evolution mechanism of major histocompatibility complex (MHC) genes has been investigated in many mammals, however, much less is known in teleost. In order to investigate the mechanisms creating and maintaining variability at the MHC class II DAA locus, we examined the polymorphism, gene duplication and balancing selection of MHC class II DAA gene of the half-smooth tongue sole (Cynoglossus semilaevis). We described 33 alleles in the C. semilaevis, recombination and gene duplication seems to play more important roles in the origin of new alleles. The rate of non-synonymous substitutions (d(N)) occurred at a significantly higher frequency than that of synonymous substitutions (d(S)) in peptide-binding region (PBR) and non-PBR, suggesting balancing selection for maintaining polymorphisms at the MHC II DAA locus. Many positive selection sites were found to act very intensively on antigen-binding sites. Our founding suggests a snapshot in an evolutionary process of MHC-DAA gene evolution of the C. semilaevis.  相似文献   

20.
Signatures of balancing selection are often found when investigating the extremely polymorphic regions of major histocompatibility complex (MHC) genes, and it is generally accepted that selective forces maintain this polymorphism. However, the exact nature of the selection is controversial. Theoretical studies have mainly focused on overdominance and/or frequency dependent selection while laboratory studies have emphasised the role of mate choice. Empirical field data, on the other hand, have been relatively scarce. Previously we have found that geographic structure in MHC class II genes of the Great Snipe (Gallinago media) is too pronounced to be explained by neutral forces alone. Here we test the hypothesis that sexual selection on MHC alleles may be influencing this geographic structure between mountain and lowland populations. We found evidence of balancing selection acting on MHC genes in the form of a higher rate of amino-acid changing substitutions compared to silent substitutions in the peptide binding regions. Not only natural selection but also sexual selection may influence MHC polymorphism in this bird because certain MHC alleles have been found to be associated with higher male mating success. Contrary to predictions from negative frequency dependent selection, males carrying locally rare alleles did not have a mating advantage. Instead, the mating success of alleles in a mountain population was positively correlated to their relative frequency in the mountains compared to the lowlands, implying that locally adapted MHC alleles may also be favoured by sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号