首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA synthesis fidelities of two thermostable DNA polymerases, Thermus aquaticus (Taq) and Thermococcus litoralis (Tli, also known as Vent), and a non-thermostable enzyme, a modified T7 DNA polymerase (Sequenase), were determined by analyzing polymerase chain reaction (PCR) products using denaturing gradient gel electrophoresis (DGGE). The error rates were 4.4, 8.9, and 2.4 x 10(-5) errors/bp for modified T7, Taq, and Tli polymerase, respectively. Reducing the nucleotide triphosphate concentration for Tli polymerase during PCR did not alter the fidelity. The ability of DGGE to detect a mutant present at several percent in a wild type population is related to the polymerase fidelity. To examine the sensitivity of mutant detection, human genomic DNA containing a 1% fraction of a known base pair substitution mutant was PCR-amplified with the three enzymes using primers that flank the mutant sequence. The PCR products were analyzed by DGGE. The signal from the mutant present at 1% was visible in the samples amplified with modified T7 and Tli polymerase, but the higher error rate of Taq polymerase did not permit visualization of the signal in DNA amplified with Taq polymerase.  相似文献   

2.
The chemical structures of the two modified folates present in Thermococcus litoralis were established. These compounds, each containing a core structure of 1-[4-[[1-(2-amino-7-methyl- 4-oxo-6-pteridinyl)-ethyl]amino]phenyl]-1-deoxy-[1-alpha-D- ribofuranosyl]-ribitol, were characterized. The five position of the ribose in this core structure was beta-linked to the C-1 of a poly-beta (1-->4)N-acetylglucosamine having a chain length of four or five N-acetylglucosamine residues. Thus, these compounds are N-acetylglucosamine homologs of the modified folates found in Pyrococcus furiosus.  相似文献   

3.
Repeating DNA sequences, such as telomeres, centromeres, and micro- and mini-satellites, comprise 50% of the genome and play important roles in regulatory and pathogenic mechanisms. In order to study structures and functions of such repeating sequences, it is important to have simple and efficient methods for making them in vitro. Here, we describe the efficient and convenient expansion of repetitive telomeric and minisatellite DNA sequences starting from small synthetic templates to final product lengths of several hundreds to thousands of nucleotides by the thermostable DNA polymerase from Thermococcus litoralis (Vent DNA polymerase). This enzyme was so far unknown to catalyze repeat expansion. Either single-stranded or double-stranded DNAs could be produced, depending on nucleotides present. Compared to earlier results obtained with other enzymes, the expansion reaction is highly efficient both in its yield and product length, and proceeds without thermal cycling. Moreover, the products are characterized by a narrow length distribution.  相似文献   

4.
We describe a new species, Thermococcus litoralis, which is different from the type species Thermococcus celer in molecular, morphological and physiological characteristics.Abbreviations 3 x SSC (standard saline citrate) - 0.45 M NaCl 0.045 M Na3-citrate  相似文献   

5.
Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase   总被引:80,自引:0,他引:80  
K R Tindall  T A Kunkel 《Biochemistry》1988,27(16):6008-6013
We have determined the fidelity of in vitro DNA synthesis catalyzed at high temperature by the DNA polymerase from the thermophilic bacterium Thermus aquaticus. Using a DNA substrate that contains a 3'-OH terminal mismatch, we demonstrate that the purified polymerase lacks detectable exonucleolytic proofreading activity. The fidelity of the Taq polymerase was measured by two assays which score errors produced during in vitro DNA synthesis of the lacZ alpha complementation gene in M13mp2 DNA. In both assays, the Taq polymerase produces single-base substitution errors at a rate of 1 for each 9000 nucleotides polymerized. Frameshift errors are also produced, at a frequency of 1/41,000. These results are discussed in relation to the effects of high temperature on fidelity and the use of the Taq DNA polymerase as a reagent for the in vitro amplification of DNA by the polymerase chain reaction.  相似文献   

6.
The hyperthermophilic archaeon Thermococcus litoralis strain NS-C, first isolated in 1985, has been a foundational organism for archaeal research in biocatalysis, DNA replication, metabolism, and the discovery of inteins. Here, we present the genome sequence of T. litoralis with a focus on the replication machinery and inteins.  相似文献   

7.
A Skerra 《Nucleic acids research》1992,20(14):3551-3554
Two thermostable DNA polymerases with proofreading activity--Vent DNA polymerase and Pfu DNA polymerase--have attracted recent attention, mainly because of their enhanced fidelities during amplification of DNA sequences by the polymerase chain reaction. A severe disadvantage for their practical application, however, results from the observation that due to their 3' to 5' exonuclease activities these enzymes degrade the oligodeoxynucleotides serving as primers for the DNA synthesis. It is demonstrated that this exonucleolytic attack on the primer molecules can be efficiently prevented by the introduction of single phosphorothioate bonds at their 3' termini. This strategy, which can be easily accomplished using routine DNA synthesis methodology, may open the way to a widespread use of these novel enzymes in the polymerase chain reaction.  相似文献   

8.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

9.
Overall, 30 strains of hyperthermophilic archaea, representing seven species of the genera Thermococcus, Desulfurococcus, Thermoproteus, and Acidilobus, were tested for the presence of thermostable DNA polymerases. Thermostabilities of the polymerases varied distinctly among the strains within one species. Polymerases of five strains retained 60-100% activity upon incubation of the preparations at 95 degrees C for 120 min. A new DNA polymerase was isolated from the strain Thermococcus litoralis Sh1AM, possessing the enzyme with the most promising properties, and characterized. Molecular weight of the enzyme is 90-100 kDa. The purified DNA polymerase preserved 50% of the initial activity upon incubation at 95 degrees C for 120 min. The polymerase isolated displayed an associated 3'-5' exonuclease activity. The error rate when extending DNA strand was at least twofold lower compared with Taq polymerase. The main physicochemical and enzymatic properties of the new polymerase are similar to the known DNA polymerases of family B.  相似文献   

10.
N Ogata  T Miura 《Nucleic acids research》1998,26(20):4652-4656
DNA polymerase of the archaeon Thermococcus litoralis can synthesize a long stretch of linear double-stranded DNA in the complete absence of added primer and template DNAs. This finding suggests that genetic information can potentially be created by protein. We report here the effects of temperature, ionic strength and pH on this ab initio DNA synthesis by the protein in vitro . When the temperature of the reaction was changed, the sequence of the product DNA changed markedly. For instance, the reaction products were (TAAT) n at 69 degrees C, (TATCCGGA) n at 84 degrees C and (TATCGCGATAGCGATCGC) n at 89 degrees C. The ionic strength of the reaction condition also affected the sequence: it was (TATCTAGA) n with 0 mM KCl, (TATATACG) n with 50 mM KCl and (TATAGTTATAAC) n with 100 mM KCl at 74 degrees C. When the pH of the reaction condition was changed from 6.8 to 10.8, the size of the product DNA decreased, but its sequence did not. These results demonstrate that DNA synthesized ab initio by DNA polymerase of T.litoralis is markedly influenced by the reaction conditions. The results also suggest that genetic information that might have been created by protein on the early earth is strongly influenced by environmental factors.  相似文献   

11.
Jeong JJ  Fushinobu S  Ito S  Jeon BS  Shoun H  Wakagi T 《FEBS letters》2003,535(1-3):200-204
The gene encoding phosphoglucose isomerase was cloned from Thermococcus litoralis, and functionally expressed in Escherichia coli. The purified enzyme, a homodimer of 21.5 kDa subunits, was biochemically characterized. The inhibition constants for four competitive inhibitors were determined. The enzyme contained 1.25 mol Fe and 0.24 mol Zn per dimer. The activity was enhanced by the addition of Fe(2+), but inhibited by Zn(2+) and EDTA. Enzymes with mutations in conserved histidine and glutamate residues in their cupin motifs contained no metals, and showed large decreases in k(cat). The circular dichroism spectra of the mutant enzymes and the wild type enzyme were essentially the same but with slight differences.  相似文献   

12.
The MIP1 gene which encodes yeast mitochondrial DNA polymerase possesses in its N-terminal region the three motifs (Exo1, Exo2 and Exo3) which characterize the 3'-5' exonucleolytic domain of many DNA polymerases. By site directed mutagenesis we have substituted alanine or glycine residues for conserved aspartate residues in each consensus sequence. Yeast mutants were therefore generated that are capable of replicating mitochondrial DNA (mtDNA) and exhibit a mutator phenotype, as estimated by the several hundred-fold increase in the frequency of spontaneous mitochondrial erythromycin resistant mutants. By overexpressing the mtDNA polymerase from the GAL1 promoter as a major 140 kDa polypeptide, we showed that the wild-type enzyme possesses a mismatch-specific 3'-5' exonuclease activity. This activity was decreased by approximately 500-fold in the mutant D347A; in contrast, the extent of DNA synthesis was only slightly decreased. The wild-type mtDNA polymerase efficiently catalyses elongation of singly-primed M13 DNA to the full-length product. However, the mutant preferentially accumulates low molecular weight products. These data were extended to the two other mutators D171G and D230A. Glycine substitution for the Cys344 residue which is present in the Exo3 site of several polymerases generates a mutant with a slightly higher mtDNA mutation rate and a slightly lower 3'-5' exonucleolytic activity. We conclude that proofreading is an important determinant of accuracy in the replication of yeast mtDNA.  相似文献   

13.
G Bialek  H P Nasheuer  H Goetz    F Grosse 《The EMBO journal》1989,8(6):1833-1839
DNA polymerase-primase complex, isolated with an apparently undegraded alpha-subunit, was immunoaffinity-purified to near homogeneity from the human lymphoblast line HSC93. The undegraded state of the alpha-subunit was monitored by Western-blot analysis of crude cellular extracts and all active fractions obtained during purification. The human polymerase-primase consists of four subunits with molecular weights of 195, 68, 55 and 48 kd. The fidelity of the polymerase-primase in copying bacteriophage phi X174am16 DNA in vitro was determined by measuring the frequency of production of different revertent phages. The overall accuracy was between 4 x 10(-6) and 10 x 10(-6). This value reflects the spontaneous mutation frequency of phi X174am16 phages in Escherichia coli, and is 10- to 20-fold higher than the accuracy of a conventionally purified enzyme from calf thymus. The frequencies of base pairing mismatches, estimated from pool bias measurements, were 3.5 x 10(-7) (1/2 880,000) for dGMP:Ttemplate mispairs, between 10(-7) and 10(-8) for dCMP:Ttemplate (1/35,000,000), dCMP:Atemplate (1/18,200,000) and dAMP:Gtemplate mispairs (1/16,500,000), and below 10(-8) (1/100,000,000) for dTMP:Ttemplate, dGMP:Atemplate and dGMP:Gtemplate mispairs. In contrast to previous preparations, the intact polymerase-primase possesses a 3'----5' exonuclease activity. This exonuclease removes both matched and mismatched 3'-OH ends, with a preference for mismatched bases. Fidelity was reduced 8-fold by increasing the concentration of the next nucleotide following the incorporated mismatch nucleotide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to glucoside hydrolase family 57 and catalyzes the disproportionation of amylose and the formation of large cyclic alpha-1,4-glucan (cycloamylose) from linear amylose. We determined the crystal structure of TLGT with and without an inhibitor, acarbose. TLGT is composed of two domains: an N-terminal domain (domain I), which contains a (beta/alpha)7 barrel fold, and a C-terminal domain (domain II), which has a twisted beta-sandwich fold. In the structure of TLGT complexed with acarbose, the inhibitor was bound at the cleft within domain I, indicating that domain I is a catalytic domain of TLGT. The acarbose-bound structure also clarified that Glu123 and Asp214 were the catalytic nucleophile and acid/base catalyst, respectively, and revealed the residues involved in substrate binding. It seemed that TLGT produces large cyclic glucans by preventing the production of small cyclic glucans by steric hindrance, which is achieved by three lids protruding into the active site cleft, as well as an extended active site cleft. Interestingly, domain I of TLGT shares some structural features with the catalytic domain of Golgi alpha-mannosidase from Drosophila melanogaster, which belongs to glucoside hydrolase family 38. Furthermore, the catalytic residue of the two enzymes is located in the same position. These observations suggest that families 57 and 38 evolved from a common ancestor.  相似文献   

15.
The gene cluster in Thermococcus litoralis encoding a multicomponent and binding protein-dependent ABC transporter for trehalose and maltose contains an open reading frame of unknown function. We cloned this gene (now called treT), expressed it in Escherichia coli, purified the encoded protein, and identified it as an enzyme forming trehalose and ADP from ADP-glucose and glucose. The enzyme can also use UDP- and GDP-glucose but with less efficiency. The reaction is reversible, and ADP-glucose plus glucose can also be formed from trehalose and ADP. The rate of reaction and the equilibrium favor the formation of trehalose. At 90 degrees C, the optimal temperature for the enzymatic reaction, the half-maximal concentration of ADP-glucose at saturating glucose concentrations is 1.14 mm and the V(max) is 160 units/mg protein. In the reverse reaction, the half-maximal concentration of trehalose at saturating ADP concentrations is 11.5 mm and the V(max) was estimated to be 17 units/mg protein. Under non-denaturating in vitro conditions the enzyme behaves as a dimer of identical subunits of 48 kDa. As the transporter encoded in the same gene cluster, TreT is induced by trehalose and maltose in the growth medium.  相似文献   

16.
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to family 57 of glycoside hydrolases and catalyzes the disproportionation and cycloamylose synthesis reactions. Family 57 glycoside hydrolases have not been well investigated, and even the catalytic mechanism involving the active site residues has not been studied. Using 3-ketobutylidene-beta-2-chloro-4-nitrophenyl maltopentaoside (3KBG5CNP) as a donor and glucose as an acceptor, we showed that the disproportionation reaction of TLGT involves a ping-pong bi-bi mechanism. On the basis of this reaction mechanism, the glycosyl-enzyme intermediate, in which a donor substrate was covalently bound to the catalytic nucleophile, was trapped by treating the enzyme with 3KBG5CNP in the absence of an acceptor and was detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry after peptic digestion. Postsource decay analysis suggested that either Glu-123 or Glu-129 was the catalytic nucleophile of TLGT. Glu-123 was completely conserved between family 57 enzymes, and the catalytic activity of the E123Q mutant enzyme was greatly decreased. On the other hand, Glu-129 was a variable residue, and the catalytic activity of the E129Q mutant enzyme was not decreased. These results indicate that Glu-123 is the catalytic nucleophile of TLGT. Sequence alignment of TLGT and family 38 enzymes (class II alpha-mannosidases) revealed that Glu-123 of TLGT corresponds to the nucleophilic aspartic acid residue of family 38 glycoside hydrolases, suggesting that family 57 and 38 glycoside hydrolases may have had a common ancestor.  相似文献   

17.
BACKGROUND: Pyrrolidone carboxyl peptidases (pcps) are a group of exopeptidases responsible for the hydrolysis of N-terminal pyroglutamate residues from peptides and proteins. The bacterial and archaeal pcps are members of a conserved family of cysteine proteases. The pcp from the hyperthermophilic archaeon Thermococcus litoralis is more thermostable than the bacterial enzymes with which it has up to 40% sequence identity. The pcp activity in archaea and eubacteria is proposed to be involved in detoxification processes and in nutrient metabolism; eukaryotic counterparts of the enzyme are involved in the processing of biologically active peptides. RESULTS: The crystal structure of pcp has been determined by multiple isomorphous replacement techniques at 1.73 A resolution and refined to an R factor of 18.7% (Rfree = 21.4%). The enzyme is a homotetramer of single open alpha/beta domain subunits, with a prominent hydrophobic core formed from loops coming together from each monomer. The active-site residues have been identified as a Cys143-His167-Glu80 catalytic triad. Structural homology to enzymes of different specificity and mechanism has been identified. CONCLUSIONS: The Thermococcus pcp has no sequence or structural homology with other members of the cysteine protease family. It does, however, show considerable similarities to other hydrolytic enzymes of widely varying substrate specificity and mechanism, suggesting that they are the products of divergent evolution from a common ancestor. The enhanced thermostability of the T. litoralis pcp may arise from hydrophobic interactions between the subunits and the presence of intersubunit disulphide bridges.  相似文献   

18.
Thermococcus litoralis (Tl) have been investigated by using the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. The results reveal a [Fe4S4]2+,+ cluster (E m=−368 mV) that undergoes redox cycling between an oxidized form with an S=0 ground state and a reduced form that exists as a pH- and medium-dependent mixture of S=3/2 (g=5.4; E/D=0.33) and S=1/2 (g=2.03, 1.93, 1.86) ground states, with the former dominating in the presence of 50% (v/v) glycerol. Three distinct types of W(V) EPR signals have been observed during dye-mediated redox titration of as-isolated Tl FOR. The initial resonance observed upon oxidation, termed the “low-potential” W(V) species (g=1.977, 1.898, 1.843), corresponds to approximately 25–30% of the total W and undergoes redox cycling between W(IV)/W(V) and W(V)/W(VI) states at physiologically relevant potentials (E m=−335 and −280 mV, respectively). At higher potentials a minor “mid-potential” W(V) species, g=1.983, 1.956, 1.932, accounting for less than 5% of the total W, appears with a midpoint potential of −34 mV and persists up to at least +300 mV. At potentials above 0 mV, a major “high-potential” W(V) signal, g=1.981, 1.956, 1.883, accounting for 30–40% of the total W, appears at a midpoint potential of +184 mV. As-isolated samples of Tl FOR were found to undergo an approximately 8-fold enhancement in activity on incubation with excess Na2S under reducing conditions and the sulfide-activated Tl FOR was partially inactivated by cyanide. The spectroscopic and redox properties of the sulfide-activated Tl FOR are quite distinct from those of the as-isolated enzyme, with loss of the low-potential species and changes in both the mid-potential W(V) species (g=1.981, 1.950, 1.931; E m=−265 mV) and high-potential W(V) species (g=1.981, 1.952, 1.895; E m=+65 mV). Taken together, the W(V) species in sulfide-activated samples of Tl FOR maximally account for only 15% of the total W. Both types of high-potential W(V) species were lost upon incubation with cyanide and the sulfide-activated high-potential species is converted into the as-isolated high-potential species upon exposure to air. Structural models are proposed for each of the observed W(V) species and both types of mid-potential and high-potential species are proposed to be artifacts of ligand-based oxidation of W(VI) species. A W(VI) species with terminal sulfido or thiol ligands is proposed to be responsible for the catalytic activity in sulfide-activated samples of Tl FOR. Received: 9 September 1999 / Accepted: 17 February 2000  相似文献   

19.
High fidelity DNA polymerases maintain genomic fidelity through a series of kinetic steps that include nucleotide binding, conformational changes, phosphoryl transfer, polymerase translocation, and nucleotide excision. Developing a comprehensive understanding of how these steps are coordinated during correct and pro-mutagenic DNA synthesis has been hindered due to lack of spectroscopic nucleotides that function as efficient polymerase substrates. This report describes the application of a non-natural nucleotide designated 5-naphthyl-indole-2′-deoxyribose triphosphate which behaves as a fluorogenic substrate to monitor nucleotide incorporation and excision during the replication of normal DNA versus two distinct DNA lesions (cyclobutane thymine dimer and an abasic site). Transient fluorescence and rapid-chemical quench experiments demonstrate that the rate constants for nucleotide incorporation vary as a function of DNA lesion. These differences indicate that the non-natural nucleotide can function as a spectroscopic probe to distinguish between normal versus translesion DNA synthesis. Studies using wild-type DNA polymerase reveal the presence of a fluorescence recovery phase that corresponds to the formation of a pre-excision complex that precedes hydrolytic excision of the non-natural nucleotide. Rate constants for the formation of this pre-excision complex are dependent upon the DNA lesion, and this suggests that the mechanism of exonuclease proofreading is regulated by the nature of the formed mispair. Finally, spectroscopic evidence confirms that exonuclease proofreading competes with polymerase translocation. Collectively, this work provides the first demonstration for a non-natural nucleotide that functions as a spectroscopic probe to study the coordinated efforts of polymerization and exonuclease proofreading during correct and translesion DNA synthesis.  相似文献   

20.
Ogata N  Miura T 《Biochemistry》2000,39(45):13993-14001
DNA is replicated by DNA polymerase semiconservatively in many organisms. Accordingly, the replicated DNA does not become larger than the original DNA (template DNA), implying that replicative synthesis by DNA polymerase alone cannot explain the diversification of primordial simple DNA. We demonstrate that a single-stranded tandem repetitive oligodeoxyribonucleic acid (oligoDNA) composed of a palindromic or quasi-palindromic motif sequence and 25-50% GC content is elongated in vitro to more than 20,000 bases at 70-74 degrees C by the DNA polymerase of the hyperthermophilic archaeon Thermococcus litoralis without a bimolecular primer-template complex. The efficiency of elongation decreased when the palindromic structure of the oligoDNA was destroyed or when the GC content of the oligoDNA was outside the range of 25-50%. The thermal melting transition profile of the oligoDNA, as observed by ultraviolet spectroscopy, exhibited a biphasic curve, reflecting a duplex-hairpin transition at 31-40 degrees C and a hairpin-coil transition at 70-77 degrees C. The optimal reaction temperature for the elongation, for instance, of oligoDNA (AGATATCT)(6) (72 degrees C) was very close to its hairpin-coil transition melting temperature (70.4 degrees C), but was markedly higher than the temperature at which duplex oligoDNA can exist stably (<35.9 degrees C). These results suggest that a hairpin-based "intramolecular primer-template structure" is formed transiently in the oligoDNA, and it is elongated by the DNA polymerase to long DNA through repeated cycles of folding and melting of the hairpin structure. We discuss the implication of this phenomenon, "hairpin elongation", from the standpoint of potential amplification of simple DNA sequences during the evolution of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号