首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the effect of LHRH on the process of protein and/or peptide secretion characterized by the formation of granular vesicles has been studied by means of an in vitro system in the pinealocytes of three different species of rodents. LHRH has a strong influence on the activity of this process. However, this effect varies with the presence of noradrenaline (NA) in the medium and is not identical in the individual species studied. In the rat and mouse, for example, LHRH induces an increase in the number of granular vesicles when the pinealocytes are cultured in a NA-free medium, while, in contrast, in the hamster this stimulatory effect is found exclusively in the presence of NA. Moreover, in the pinealocytes of the mouse, in the presence of NA, LHRH shows an inhibitory effect on protein secretion. These results clearly demonstrate that LHRH, at least under the present in vitro conditions, acts on the synthetic activity of the pineal gland, and demonstrates the importance of pineal protein and/or peptide "hormones" in pineal endocrinology.  相似文献   

2.
Summary From studies conducted with the pineal organ of the mouse, it was ascertained that for the in vitro investigation of secretory processes (synthesis and release) of proteic/peptidic compound(s), a culture time of 5 to 14 days is optimal. A 5-day organ culture was therefore chosen to study the effects of noradrenaline on these secretory processes.Addition of noradrenaline to the culture medium provokes, in pineal explants of the normal mouse and the eyeless mouse, an inhibition of the secretory process, characterized by the formation of granular vesicles. In the hamster and rat, however, opposite results were obtained. Moreover, it appears that noradrenaline, at least in the rat, may also be involved in the regulation of the ependymal-like secretory process.The present results indicate clearly that noradrenaline (thus, the sympathetic innervation) is implicated in the regulation of the production of proteic/peptidic hormonal agents, but that the effect of this neurotransmitter is species-specific. This could explain the numerous contradictory results reported in the literature.IBRO/UNESCO fellow  相似文献   

3.
Summary The influence of gonadotropic hormones on the ultrastructure of rat pinealocytes was studied. Human chorionic gonadotropin (HCG) as well as pregnant mare serum gonadotropin (PMSG) caused a marked activation of pinealocytes. It is characterised by a conspicuous proliferation of the granular endoplasmic reticulum and Golgi apparatus as well as an increase in number of dense core vesicles, mitochondria, dense bodies, subsurface cisternae and vesicles in the terminal buds of pinealocyte processes. The changes after HCG administration were more pronounced than after PMSG.Supported by a grant from the Polish Academy of Sciences, No. 10.4.2.01.5.6  相似文献   

4.
OBJECTIVES: The aim of this study was to examine the effects of melatonin as well as of its precursor (N-acetylserotonin) and metabolite (6-hydroxymelatonin) on the ultrastructure of the pinealocytes of the Syrian hamster. MATERIAL AND METHODS: The pineal glands of 2-month-old male Syrian hamsters were examined. The animals were divided into the following groups of four animals each: group 1 - melatonin treatment; group 2 - N-acetylserotonin treatment; group 3 - 6-hydroxymelatonin treatment (all substances given subcutaneously at doses of 25 microg per animal between 16.00 and 17.00 h daily for seven weeks). Group 4 was given solvent treatment only and served as controls. The animals were killed by decapitation between 09:00 and 10.00 h. Routine electron microscopical techniques were used to obtain quantitative data on pinealocyte ultrastructure. RESULTS: Melatonin administration did not influence the size of the hamster pinealocytes, whereas administration of N-acetylserotonin and 6-hydroxymelatonin caused a significant reduction in cell size in comparison to the melatonin-treated and control groups. There were changes in the relative volumes of the mitochondria, Golgi apparatus and lysosomes in the pinealocytes of the studied groups, while the volumes of granular endoplasmic reticulum and lipid droplets were unchanged. The dense-core vesicles were more numerous in the pinealocytes of the melatonin and 6-hydroxymelatonin-treated groups in comparison to those of animals treated with N-acetylserotonin or the controls. CONCLUSIONS: The changes observed in the ultrastructure of hamster pinealocytes indicate that administration of melatonin as well as of its precursor or metabolite influences the morphology of these cells and also, perhaps, their secretory activity.  相似文献   

5.
Summary Fine structural features of pinealocytes of cotton rats (Sigmodon hispidus) were examined. Golgi complexes, mitochondria, endoplasmic reticulum and polysomes are usual organelles seen in the perikaryonal cytoplasm of pinealocytes. Many non-granulated vesicles (40 to 80 nm in diameter) and a few granulated vesicles (about 100 nm in diameter) are associated with the Golgi cisternae. Occasionally, the cisternae contain granular materials. The perikaryonal cytoplasm of pinealocytes is characterized by the presence of inclusion bodies. These bodies are usually round in shape, not bounded by a limiting membrane and composed of fine granular or filamentous materials of high electron-opacity, which are similar in appearance to the substance seen in the nucleolonema. Pinealocyte processes, filled with abundant non-granulated vesicles and some granulated vesicles, are mainly found within the parenchyma and occasionally in perivascular spaces.Supported in part by NSF grant no. PCM 77-05734 and NIH grant no. HD-10202 (Morphology Core)  相似文献   

6.
Summary The mammalian pineal is thought to produce an antigonadotropic principle under conditions of reduced photoperiod, constant darkness or blinding by optic enucleation. A number of previous studies on mammalian pineals have suggested that the dense-cored vesicles present in pinealocytes may represent morphological evidence of secretory activity.In the present study the ultrastructure of pinealocytes was studied in adult Charles River CD-1 mice blinded by optical enucleation. By one month following optic enucleation the mean number of dense-cored vesicles in the cytoplasm of pinealocytes adjacent to pericapillary spaces had significantly decreased by 55% when compared with intact controls, and remained at this low level at two months and six months. A relative increase in the proportion of large agranular vesicles and an increased number of large, irregular vacuoles was observed also in the pinealocytic polar processes of blinded mice. When compared to control mice the pinealocytic Golgi regions appeared to be hypertrophied in blinded mice. The apparent stimulation of pinealocytic organelles coupled with the observed decrease in dense-cored vesicles suggest an increased synthesis and release of secretory product.Supported in part by NIH Grant No. HD 08759  相似文献   

7.
Abstract: Neuropeptide Y is colocalized with noradrena-line in sympathetic fibers innervating the rat pineal gland. In this article we present a study of the effects and mechanisms of action of neuropeptide Y on the pineal noradrenergic transmission, the main input leading to the rhythmic secretion of melatonin. At the presynaptic level, neuropeptide Y inhibits by 45%, with an EC50 of 50 n M , the potassium-evoked noradrenaline release from pineal nerve endings. This neuropeptide Y inhibition occurs via the activation of pertussis toxin-sensitive G protein-coupled neuropeptide Y-Y2 receptors and is independent from, but additive to, the α2-adrenergic inhibition of noradrenaline release. At the postsynaptic level, neuropeptide Y decreases by a maximum of 35%, with an EC50 of 5 n M , the β-adrenergic induction of cyclic AMP elevation via the activation of neuropeptide Y-Y1 receptors. This moderate neuropeptide Y-induced inhibition of cyclic AMP accumulation, however, has no effect on the melatonin secretion induced by a β-adrenergic stimulation. On the contrary, in the presence of 1 m M ascorbic acid, neuropeptide Y potentiates (up to threefold) the melatonin secretion. In conclusion, this study has demonstrated that neuropeptide Y modulates the noradrenergic transmission in the rat pineal gland at both presynaptic and postsynaptic levels, using different receptor subtypes and transduction pathways.  相似文献   

8.
Tani  Eiichi  Yamagata  Shogo  Ito  Yuko 《Cell and tissue research》1977,176(1):131-142
Summary Pineal glands were grafted under the kidney capsule of mature male rats for periods of 20, 40, 60 and 100 days. Each grafted gland was then excised and divided into two halves. One half was processed for conventional electron microscopy and the other was fixed in aldehydes and then incubated in a zinc iodide-osmium tetroxide mixture at pH 4.4 (A-ZIO-4.4). During the forty days following the operation pinealocytes showed the typical ultrastructural features associated with cells with a high protein and/or peptide secretory activity. On the other hand, during this period, the number of granular vesicles decreased progressively. From day 40 on, the grafted pinealocytes lacked granular vesicles. During the second half of the experimental period the ultrastructure of the pinealocytes indicated that their secretory activity was considerably decreased. During the acute phase of the experimental period numerous structures regarded as the tip of growing axons as well as typical nerve fibres appeared around blood vessels and within the parenchyma of the grafted gland. In the transplanted tissue obtained 60 and 100 days after the operation the growth cones were scarce, whereas typical nerve endings became numerous. These endings contained small clear vesicles which reacted positively when the tissue was treated with A-ZIO-4.4. The secretory activity of the grafted pineal gland and the nature of the nerve fibres which innervate the graft are discussed.The authors wish to thank Mrs. E.M. Rodríguez de Calderón for her valuable helpSupported by Grant N 71/1973 of CAPI, Universidad Nacional de Cuyo, Mendoza, and by Grant N 5970 a/74 of the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentine (CONICET)Fellow of the CONICETEstablished Member of CONICET  相似文献   

9.
Summary The number of granulated vesicles in mouse pinealocytes exhibit a distinct circadian rhythm which is abolished by superior cervical ganglionectomy. Since melatonin treatment markedly affects the number of pinealocytic granulated vesicles, it was suggested that a relationship may exist between norepinephrine, melatonin, and the synthesis and/or secretion of pinealocyte granulated vesicles. The present study was undertaken in an attempt to clarify this relationship. Mice were housed in an environmental chamber under controlled lighting (12L/12D), and were treated with either reserpine, a drug which depletes serotonin and norepinephrine, or p-chlorophenylalanine (p-CPA), an inhibitor of serotonin synthesis. They were sacrificed at various times over a twenty-four hour period, and granulated vesicles present in the pinealocytes were quantitated in thin cross sections through pericapillary areas. Reserpine treatment resulted in a marked increase in the number of granulated vesicles during the dark, but led to a slight decrease during the photoperiod. Treatment with p-CPA produced no significant effect. The results of this study do not support our previous theory that melatonin plays an important role in the regulation of the pinealocyte secretory process, but instead points more directly to the significant role that norepinephrine has in controlling pinealocyte secretion.Supported in part by N.I.H. Grant # HD 08759  相似文献   

10.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

11.
Summary The pineal gland of the rat receives a rich nervous supply originating from the superior cervical ganglia. These fibers contain serotonin in addition to their neurotransmitter, noradrenaline. Cytochemical studies at the ultrastructural level have shown that both amines are present in the cores of the granular vesicles that are characteristic of these nerves. It is presently shown that the bilateral electrical stimulation of the preganglionic fibers innervating the ganglia markedly reduces the number of small sites reacting cytochemically for both noradrenaline and serotonin, these sites corresponding to the cores of small granular vesicles, while the larger reactive sites (cores of large vesicles) remain unaltered. The vesicles are retained in nerve terminals after stimulation, as observed in conventionally processed tissues, although with altered sizes and shapes. Apart from these cytochemical and structural changes, nerve stimulation also reduces the endogenous noradrenaline content of the pineal gland. Thus, both noradrenaline and serotonin are released from their storage sites in pineal sympathetic nerves after electrical stimulation in vivo. This suggests the possibility that several substances with presumed transmitter or modulatory functions might be simultaneously released by nerve impulses from a given nerve terminal.  相似文献   

12.
Summary The ultrastructure of the pinealocytes of the golden mole (Amblysomus hottentotus), a blind subterranean mammal living in complete darkness, was examined and compared with that of pinealocytes of other mammals. On the basis of the presence of granular vesicles and glycogen granules, only one population of pinealocytes was found. Large mitochondria, ribosomes, lipid inclusions and scarce lysosomes were observed in the perikaryon. Numerous glycogen granules, often forming typical accumulations, were frequently found to be associated with typical vacuoles. An extraordinary large number of granular vesicles is characteristic of the golden mole pinealocyte. Phenomena of excretion of compound(s) stored in the granular vesicles were identified. Morphologically this is characterized by dissociation of its granular core in situ while its limiting membrane is preserved. The physiological significance of the secretory process characterized by the formation of these granular vesicles is discussed.A portion of these observations were presented at the International Symposium on the Pineal Gland, Jerusalem, Israel, November 14–17, 1977  相似文献   

13.
Abstract: The present study describes the development of a new technique to measure melatonin contents in the pineal gland of freely moving rats, by means of on-line microdialysis. The transcerebral cannula was modified, and a sensitive assay of melatonin, using HPLC with fluori-metric detection, was set up. With this system it is possible to monitor the melatonin levels on-line in the pineal gland during day-and nighttime. The nightly increase in melatonin release was recorded. Tetrodotoxin had an inhibitory effect on nighttime levels, whereas even high concentrations did not alter the daytime level. From this we conclude that neuronal activity is necessary to synthesize melatonin and that during daytime no net neuronal activity is present. Melatonin levels could be greatly enhanced by systemic administration of the β-agonist isoprenaline (ISO). Also, local infusion of ISO or 8-bromoadenosine 3',5'-cyclic monophosphate, an analogue of the second messenger cyclic AMP, resulted in increased melatonin levels, demonstrating the presence of β-adrenergic receptors, coupled to a cyclic AMP-based second messenger system, on the pineal gland. Injection of phenylephrine had no effect on daytime levels. Only when administered during ISO-induced stimulation of melatonin release did it enhance this stimulated release. This proved the regulatory role of α1-receptors on pinealocytes. The method presented is of special interest for investigating the innervation of the pineal gland and the biochemical processes that regulate the biosynthesis of melatonin. Also, for studies on the diurnal rhythms of melatonin release and factors that influence these rhythms in freely moving animals, this model will be of great value.  相似文献   

14.
Melatonin and other 5-methoxyindoles are compounds usually associated with the pineal gland. Research is expanding from studies of pineal melatonin to studies of extrapineal organs and of other 5-methoxyindoles besides melatonin. Research in recent years has shown that the retina also contains and synthetises 5-methoxyindoles. The biochemical modes of action are still unclear. Nevertheless, they seem to have physiological roles in the pineal gland and the retina. These compounds are thought to participate in the regulation of the cyclic metabolism of the retina. Melatonin and other 5-methoxyindoles are often classified as neuromodulators.  相似文献   

15.
Summary The pineal organ of Raja clavata was studied by light and electron microscopy, including the immunocytochemical antiopsin reaction. The pineal organ of the ray consists of three portions: (i) a large proximal pineal, (ii) a long tube-like connecting stalk, and (iii) a short distal terminal enlargement. This latter end-vesicle lies in the deep connective tissue layers of the braincase. All portions of the pineal are composed of pinealocytes, intrinsic neurons, ependymal/glial cells, and bundles of nerve fibers embedded in thin neuropil formations. The inner segments of the pinealocytes protrude into the lumen in all parts of the organ and usually contain basal bodies and numerous mitochondria. Often, two outer segments were found to arise from the basal bodies of a single inner segment. By means of light-microscopic immunocytochemistry the outer segments showed a strong antiopsin reaction.The axons of the pinealocytes form ribbon-containing synapses on dendritelike profiles, which appear to belong to the intrinsic pineal neurons. There are other axo-dendritic synapses established by presynaptic terminals lacking ribbons and containing granular and synaptic vesicles. Pineal neurons may contain granular vesicles approximately 60–100 nm in diameter; their processes contribute to the bundles of unmyelinated axons.The fine structural organization of the pineal organ and the opsin immunoreactivity of the outer segments of the pinealocytes indicate a photoreceptive capacity of the organ. The double outer segments represent a peculiar multiplication of the photoreceptor structures.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft to A. Oksche (Ok 1/24; 1/25: Mechanismen biologischer Uhren)On leave from the 2nd Department of Anatomy, Semmelweis OTE, Budapest, Hungary  相似文献   

16.
The significance of autonomic nerves reaching the pincal organ was already investigated in connection to the innervation of pinealocytes and mediating light information from the retina for periodic melatonin secretion. In earlier works we found that some autonomic nerve fibers are not secretomotor but terminate on arteriolar smooth muscle cells in the pineal organ of the mink (Mustela vison). Studying in serial sections the pineal organ of the mink and 15 other mammalian species in the present work, we investigated whether similar axons of vasomotor-type are generally present in the wall of pineal vessels, further, whether they reach the organ via the conarian nerves or via periarterial plexuses. In all species investigated, axons of perivasal nerve bundles were found to form terminal enlargements on the smooth muscle layer of pineal arterioles. The neuromuscular endings contain several synaptic and some granular vesicles. Axon terminals are also present around pineal veins. In serial sections, we found that the so-called conarian autonomic nerves reach the pineal organ alongside pineal veins draining into the great internal cerebral vein. Similar nerves present near arteries of the arachnoid enter the pineal meningeal capsule and septa by arterioles, both perivenous and periarterial nerves form terminals of vasomotor-type. The arteriomotor and venomotor regulation of the tone of the vessels of the pineal organ may serve the vascular support for circadian and circannual periodic changes in metabolic activity of the pineal tissue.  相似文献   

17.
There is an extensive literature dealing with the study of indoles, especially serotonin and melatonin, but with considerably less emphasis on the cells and cell types involved in the synthetic process. In the present electron microscopical investigation of the pineal end vesicle ofHeteropneustes fossilis, pinealocytes have been revealed in the pineal parenchyma characterized with extensive synthetic apparatus viz., rough endoplasmic reticulum, free ribosomes, lipid droplets, mitochondria and Golgi bodies. Two sub-populations of the pinealocytes are easily distinguishable on the basis of electron opacity and the preponderance of one or other morphological profile: light cells and dark cells. Light cells represent the active phase of secretion while dark cells represent the storage and release phase of secretion. A neuroendocrine role for the pineal body inHeteropneustes fossilis is suggested which may be significant in view of the nocturnal habit of the fish. Dedicated to my father, Prof. C B L Srivastava  相似文献   

18.
Summary Various types of synaptic formations on pinealocytes and pineal neurons were found in the pineal body of Macaca fuscata. Axo-somatic synapses of the Gray type-II category were detected on the pinealocyte cell body. Gap junctions and ribbon synapses were observed between adjacent pinealocytes. About 70 nerve-cell bodies were detected in one half of the whole pineal body bisected midsagittally. They were localized exclusively deep in the central part. When examined electron-microscopically, they were found to receive ribbon-synapse-like contacts from pinealocytic processes. They also received synaptic contacts of the Gray type-I category on their dendrites, and those of the Gray type-II category on their cell bodies from nerve terminals of unknown origin. All these synapse-forming axon terminals contained small clear vesicles. Thus, the pineal neurons of the monkey, at least in part, are suggested to be derived from the pineal ganglion cells in the lower vertebrates and not from the postganglionic parasympathetic neurons. The functional significance of these observations is discussed in relation to the innervation of the pineal body of the monkey.  相似文献   

19.
20.
By use of antibodies raised against leu-enkephalin and met-enkephalin immunoreactive, opioidergic bi- and multipolar cells were demonstrated in the pineal gland of the European hamster. Ultrastructural analysis of these opioidergic cells revealed them to be pinealocytes. Processes emerged from the cell bodies and terminated in club-shaped swellings containing many small clear and some larger granular vesicles. Some of the terminals made synapse-like contacts with non-immunoreactive pinealocytes. The presence of the opioidergic pinealocytes strongly indicates that the pineal gland of the European hamster, in addition to its pinealopetal nervous regulation, is regulated by intrapineal peptidergic pinealocytes via a synaptic mechanism. A possible paracrine role of the opioidergic cells must also be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号