首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme activities forming extracellular products from succinate, fumarate, and malate were examined using washed cell suspensions of Pseudomonas fluorescens from chemostat cultures. Membrane-associated enzyme activities (glucose, gluconate, and malate dehydrogenases), producing large accumulations of extracellular oxidation products in carbon-excess environments, have previously been found in P. fluorescens. Investigations carried out here have demonstrated the presence in this microorganism of a malic enzyme activity which produces extracellular pyruvate from malate in carbon-excess environments. Although the three membrane dehydrogenase enzymes decrease significantly in carbon-limited chemostat cultures, malic enzyme activity was found to increase fourfold under these conditions. The regulation of malate dehydrogenase and malic enzyme by malate or succinate was similar. Malate dehydrogenase increased and malic enzyme decreased in carbon-excess cultures. The opposite effect was observed in carbon-limited cultures. When pyruvate or glucose was used as the carbon source, malate dehydrogenase was regulated similarly by the available carbon concentration, but malic enzyme activity producing extracellular pyruvate was not detected. While large accumulations of extracellular oxalacetate and pyruvate were produced in malate-excess cultures, no extracellular oxidation products were detected in succinate-excess cultures. This may be explained by the lack of detectable activity for the conversion of added external succinate to extracellular fumarate and malate in cells from carbon-excess cultures. In cells from carbon-limited (malate or succinate) cultures, very active enzymes for the conversion of succinate to extracellular fumarate and malate were detected. Washed cell suspensions from these carbon-limited cultures rapidly oxidized added succinate to extracellular pyruvate through the sequential action of succinate dehydrogenase, fumarase, and malic enzyme. Succinate dehydrogenase and fumarase activities producing extracellular products were not detected in cells from chemostat cultures using pyruvate or glucose as the carbon source. Uptake activities for succinate, malate, and pyruvate also were found to increase in carbon-limited (malate or succinate) and decrease in carbon-excess cultures. The role of the membrane-associated enzymes forming different pathways for carbon dissimilation in both carbon-limited and carbon-excess environments is discussed.  相似文献   

2.
Several key enzymes related to carbohydrate metabolism were assayed in Setaria digitata. In the cytosolic fraction pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, malic enzyme, aspartate transaminase and alanine transaminase were found. Among the TCA cycle enzymes succinate dehydrogenase, fumarate reductase, fumarase (malate dehydration), malate dehydrogenase (malate oxidation and oxaloacetate reduction) and malic enzyme (malate decarboxylation) were detected in the mitochondrial fraction. Only reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase, NADH oxidase and NADH-cytochrome c reductase were found in the mitochondrial fraction. The significance of these results with respect to the metabolic capabilities of the worm are discussed.  相似文献   

3.
In the cattle filarial parasite Setaria digitata the mitochondria like particles have been shown to possess NADH dependent fumarate reduction coupled with site I electron transport associated phosphorylation. This reduction is catalysed by the fumarate reductase system. The Km for fumarate is 1.47 mM and that for NADH is 0.33 mM. This activity is sensitive to rotenone, antimycin A and o-Hydroxy diphenyl. One ATP is produced for each pair of electrons transferred to fumarate. The fumarate reductase system consisting of NADH-coenzyme Q reductase, cytochrome b like component(s) and succinate dehydrogenase/fumarate reductase is thus very important and hence specific inhibitors of the system may prove useful in the effective control of filariasis.  相似文献   

4.
RNA synthesis during morphogenesis of the fungusMucor racemosus   总被引:6,自引:0,他引:6  
Bacteroides succinogenes produces acetate and succinate as major products of carbohydrate fermentation. An investigation of the enzymes involved indicated that pyruvate is oxidized by a flavin-dependent pyruvate cleavage enzyme to acetyl-CoA and CO2. Active CO2 exchange is associated with the pyruvate oxidation system. Reduction of flavin nucleotides is CoASH-dependent and does not require ferredoxin. Acetyl-CoA is further metabolized via acetyl phosphate to acetate and ATP. Reduced flavin nucleotide is used to reduce fumarate to succinate by a particulate flavin-specific fumarate reductase reaction which may involve cytochrome b. Phosphoenolpyruvate (PEP) is carboxylated to oxalacetate by a GDP-specific PEP carboxykinase. Oxalacetate, in turn, is converted to malate by a pyridine nucleotide-dependent malate dehydrogenase. The organism has a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The data suggest that reduced pyridine nucleotides generated during glycolysis are oxidized in malate formation and that the electrons generated during pyruvate oxidation are used to reduce fumarate to succinate.  相似文献   

5.
Intact but fragile mitochondria were isolated from unsporulated oocysts of Eimeria tenella. The mitochondria respired in response to succinate, malate plus pyruvate, and L-ascorbate at rates of 1.00, 0.40, and 0.25 mu1 O2/min/mg protein, respectively. Spectrophotometric analyses of the cytochromes in mitochondria and whole oocysts revealed b-type and o-type cytochromes, at roughly similar levels, but no cytochrome c could be detected. The mitochondrial respiration was inhibited by cyanide, azide, carbon monoxide, antimycin A, and 2-heptyl-4-hydroxyquinoline-N-oxide, but was relatively resistant to rotenone and amytal. The quinolone coccidiostats buquinolate, amquinate, methyl benzoquate, and decoquinate were identified as very powerful inhibitiors of succinate and malate plus pyruvate supported respiration in E. tenella mitochondria. None of these four drugs exhibited any inhibitory effect on chicken liver mitochondria. Only 3 pmol of the quinolones per mg mitochondrial protein was needed to achieve 50% inhibition. The inhibition could not be reversed by coenzymes Q6 or Q10. Since the quinolones did not affect L-ascorbate-supported respiration or the activities of submitochondrial succinate dehydrogenase and NADH dehydrogenase, the site of action of the quinolone coccidiostats was tentatively identified as probably near cytochrome b in E. tenella mitochondria. Mitochondria isolated from an E. tenella amquinate-resistant mutant were much less susceptible to quinolone coccidiostats; 50% inhibition was attained by 300 pmol of the drugs/mg mitochondrial protein. The results suggest that the mechanisms of action of quinolone coccidiostats is by inhibiting the cytochrome-mediated electron transport in the mitochondria of coccidia. 2-Hydroxynaphthoquinone coccidiostats were identified as inhibitors of mitochondrial respiration of both E. tenella and chicken liver. They inhibited submitochondrial succinate dehydrogenase and NADH dehydrogenase of E. tenella, and remained equally active against the mitochondrial function of E. tenella amquinolate-resistant mutant.  相似文献   

6.
1. The midpoint potentials of the various iron-sulphur centres in Site I were determined at different pH values by the technique of redox potentiometry. An interesting feature is the pH-dependence of Centre N-2, the highest potential component of the NADH dehydrogenase segment of the respiratory chain. 2. The apparent midpoint potentials of Centre N-2 (NADH dehydrogenase) and S-1 (succinate dehydrogenase) and their pH-dependence was also determined by using the succinate/fumarate couple. Again Centre N-2 is pH-dependent in midpoint potential, and Centre S-1 is not. The results obtained by titrating with the succinate/fumarate couple are in quantitative agreement with those obtained for these centres by redox potentiometry. 3. Oxidation-reduction titrations of iron-sulphur centres with the couple NADH/NAD+ and an analogue APADH/APAD+ in the presence of rotenone gave results substantially different from those obtained by redox potentiometry; these differences may be due to the mechanism of action of NADH dehydrogenase and its specific interaction with NADH. 5. The addition of ATP to an NAD+/NADH-poised system induces an uncoupler-sensitive oxidation of Centre N-4.  相似文献   

7.
Actinobacillus sp. 130Z fermented glucose to the major products succinate, acetate, and formate. Ethanol was formed as a minor fermentation product. Under CO2-limiting conditions, less succinate and more ethanol were formed. The fermentation product ratio remained constant at pH values from 6.0 to 7.4. More succinate was produced when hydrogen was present in the gas phase. Actinobacillus sp. 130Z grew at the expense of fumarate and l-malate reduction, with hydrogen as an electron donor. Other substrates such as more-reduced carbohydrates (e.g., d-sorbitol) resulted in higher succinate and/or ethanol production. Actinobacillus sp. 130Z contained the key enzymes involved in the Embden-Meyerhof-Parnas and the pentose-phosphate pathways and contained high levels of phosphoenolpyruvate (PEP) carboxykinase, malate dehydrogenase, fumarase, fumarate reductase, pyruvate kinase, pyruvate formate-lyase, phosphotransacetylase, acetate kinase, malic enzyme, and oxaloacetate decarboxylase. The levels of PEP carboxykinase, malate dehydrogenase, and fumarase were significantly higher in Actinobacillus sp. 130Z than in Escherichia coli K-12 and accounted for the differences in succinate production. Key enzymes in end product formation in Actinobacillus sp. 130Z were regulated by the energy substrates. Received: 2 September 1996 / Accepted: 10 January 1997  相似文献   

8.
Crossed immunoelectrophoresis was used to analyze the components of membrane vesicles of anaerobically grown Escherichia coli. The number of precipitation lines in the crossed immunoelectrophoresis patterns of membrane vesicles isolated from E. coli grown anaerobically on glucose plus nitrate and on glycerol plus fumarate were 83 and 70, respectively. Zymogram staining techniques were used to identify immunoprecipitates corresponding to nitrate reductase, formate dehydrogenase, fumarate reductase, and glycerol-3-phosphate dehydrogenase in crossed immunoelectrophoresis reference patterns. The identification of fumarate reductase by its succinate oxidizing activity was confirmed with purified enzyme and with mutants lacking or overproducing this enzyme. In addition, precipitation lines were found for hydrogenase, cytochrome oxidase, the membrane-bound ATPase, and the dehydrogenases for succinate, malate, dihydroorotate, D-lactate, 6-phosphogluconate, and NADH. Adsorption experiments with intact and solubilized membrane vesicles showed that fumarate reductase, hydrogenase, glycerol-3-phosphate dehydrogenase, nitrate reductase, and ATPase are located at the inner surface of the cytoplasmic membrane; on the other hand, the results suggest that formate dehydrogenase is a transmembrane protein.  相似文献   

9.
Kalanchoë pinnata mitochondria readily oxidized succinate, malate, NADH, and NADPH at high rates and coupling. The highest respiration rates usually were observed in the presence of succinate. The high rate of malate oxidation was observed at pH 6.8 with thiamine pyrophosphate where both malic enzyme (ME) and pyruvate dehydrogenase were activated. In CAM phase III of K. pinnata mitochondria, both ME and malate dehydrogenase (MDH) simultaneously contributed to metabolism of malate. However, ME played a main function: malate was oxidized via ME to produce pyruvate and CO2 rather than via MDH to produce oxalacetate (OAA). Cooperative oxidation of two or three substrates was accompanied with the dramatic increase in the total respiration rates. Our results showed that the alternative (Alt) pathway was more active in malate oxidation at pH 6.8 with CoA and NAD+ where ME operated and was stimulated, indicating that both ME and Alt pathway were related to malate decarboxylation during the light. In K. pinnata mitochondria, NADH and NADPH oxidations were more sensitive with KCN than that with succinate and malate oxidations, suggesting that these oxidations were engaged to cytochrome pathway rather than to Alt pathway and these capacities would be desirable to supply enough energy for cytosol pyruvate orthophosphate dikinase activity.  相似文献   

10.
The succinate dehydrogenase isolated from Bacillus subtilis was found to catalyze the oxidation of succinate with hydrophilic quinones. Either naphthoquinones or benzoquinones served as acceptors. The enzyme activity increased with the redox potential of the quinone. The highest turnover number was commensurate with that of the bacterial succinate respiration in vivo. The succinate dehydrogenase was similarly active in fumarate reduction with quinols. The highest activity was obtained with the most electronegative quinol. The fumarate reductase isolated from Wolinella succinogenes catalyzed succinate oxidation with quinones and fumarate reduction with the corresponding quinols at activities similar to those of the B. subtilis enzyme. Succinate oxidation by the lipophilic quinones, ubiquinone or vitamin K-1, was monitored as cytochrome c reduction using proteoliposomes containing succinate dehydrogenase together with the cytochrome bc1 complex. The activity with ubiquinone or vitamin K-1 was commensurate with the succinate respiratory activity of bacteria or of the bacterial membrane fraction. The results suggest that menaquinone is involved in the succinate respiration of B. subtilis, although its redox potential is unfavorable.  相似文献   

11.
Spontaneous mutants resistant to vanadate, arsenate or thiophosphate were isolated from a haploid strain of Saccharomyces cerevisiae. These three anions have an inhibitory effect on some mitochondrial functions and at the level of glyceraldehyde 3-phosphate dehydrogenase, a glycolysis enzyme. All the selected mutants had the same phenotype: they were deficient in alcohol dehydrogenase I, the terminal enzyme of the glycolysis, and possessed a high content of cytochrome c oxidase, the terminal enzyme of the respiratory chain. Moreover, cytochrome c oxidase biosynthesis had become insensitive to the catabolite repression, while the biosynthesis of the other enzymes sensitive to this phenomenon were always inhibited by glucose. Metabolic effects of this pleiotropic mutation manifested themselves in the following ways. 1. Growth rate and final cell mass were enhanced, compared to the wild type, when cells were grown on glucose or on glycerol, but not on lactate or ethanol. 2. Growth under anaerobiosis was nil and mutants did not ferment. 3. Mitochondrial respiration of the mutant strains was identical to the wild type with succinate or 2-oxo-glutarate as substrate, and weak with ethanol. But with added NADH, respiration rate of the mutants was higher than that of the wild type and partially insensitive to antimycin, even when cells were grown in repression conditions. It is postulated that in mutants strains, NADH produced at the level of glyceraldehyde 3-phosphate dehydrogenase, failing to be reoxidized via alcohol dehydrogenase, could be reoxidized with a high turnover owing to the enhancement of the amount of cytochrome c oxidase. Since NADH reoxidation is partially insensitive to antimycin, a secondary pathway going from external NADH dehydrogenase to cytochrome c oxidase is suggested.  相似文献   

12.
Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high activities of methylmalonyl-CoA: pyruvate transacetylase, acetase kinase and reasonably high activities of NAD(P)-independent L(+)-lactate dehydrogenase NAD(P)-independent pyruvate dehydrogenase, phosphotransacetylase, acetate kinase and reasonably high activity of NAD(P)-independent L(+)-lactate dehydrogenase, fumarate reductase and succinate dehydrogenase. Cell-free extracts catalyzed the conversion of succinate to propionate in the presence of pyruvate, CoA and ATP and the oxaloacetate-dependent conversion of propionate to succinate. After growth on lactate or propionate in the presence of sulfate similar enzyme levels were found except for fumarate reductase which was considerably lower. Fermentative growth on lactate led to higher cytochrome b contents than growth with sulfate as electron acceptor.The labeling studies and the enzyme measurements demonstrate that in Desulfobulbus propionate is formed via a succinate pathway involving a transcarboxylase like in Propionibacterium. The same pathway may be used for the degradation of propionate to acetate in the presence of sulfate.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PEP phosphoenolpyruvate  相似文献   

13.
In this article we compare the kinetic behavior toward pyridine nucleotides (NAD+, NADH) of NAD+-malic enzyme, pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and glycine decarboxylase extracted from pea (Pisum sativum) leaf and potato (Solanum tuberosum) tuber mitochondria. NADH competitively inhibited all the studied dehydrogenases when NAD+ was the varied substrate. However, the NAD+-linked malic enzyme exhibited the weakest affinity for NAD+ and the lowest sensitivity for NADH. It is suggested that NAD+-linked malic enzyme, when fully activated, is able to raise the matricial NADH level up to the required concentration to fully engage the rotenone-resistant internal NADH-dehydrogenase, whose affinity for NADH is weaker than complex I.  相似文献   

14.
Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.  相似文献   

15.
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.  相似文献   

16.
Mitochondria from Orobanche were analysed for the activities of aconitate hydratase, isocitrate dehydrogenase, succinate dehydro-genase, fumarate hydratase, malate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases, glutamate dehydrogenase, aminotransferases, ATPase and “malic” enzyme. The specific activities of isocitrate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases and glutamate dehydrogenase in the mitochondria) fraction from parasite tissue compared favourably with those reported for most of the mitochondria from growing and storage tissues. Succinate dehydrogenase, fumarate hydratase and aspartate aminotransferase were of intermediate activity, while aconitate hydratase and malate dehydrogenase had rather low activity, and “malic” enzyme had very low activity in comparison with other preparations. The relevance of these findings in relation to mitochondrial metabolism in the parasite is discussed. No evidence was obtained to suggest any basic abnormality in the biochemical properties of the mitochondria from Orobanche centua which may be correlated with its obligatorily parasitic existence.  相似文献   

17.
The nature of the cyanide-resistant respiration of Taenia crassiceps metacestode was studied. Mitochondrial respiration with NADH as substrate was partially inhibited by rotenone, cyanide and antimycin in decreasing order of effectiveness. In contrast, respiration with succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was more sensitive to antimycin and cyanide. The saturation kinetics for O2 with NADH as substrate showed two components, which exhibited different oxygen affinities. The high-O2-affinity system (Km app=1.5 microM) was abolished by low cyanide concentration; it corresponded to cytochrome aa3. The low-O2-affinity system (Km app=120 microM) was resistant to cyanide. Similar O2 saturation kinetics, using succinate or ascorbate-TMPD as electron donor, showed only the high-O2-affinity cyanide-sensitive component. Horse cytochrome c increased 2-3 times the rate of electron flow across the cyanide-sensitive pathway and the contribution of the cyanide-resistant route became negligible. Mitochondrial NADH respiration produced significant amounts of H2O2 (at least 10% of the total O2 uptake). Bovine catalase and horse heart cytochrome c prevented the production and/or accumulation of H2O2. Production of H2O2 by endogenous respiration was detected in whole cysticerci using rhodamine as fluorescent sensor. Thus, the CN-resistant and low-O2-affinity respiration results mainly from a spurious reaction of the respiratory complex I with O2, producing H2O2. The meaning of this reaction in the microaerobic habitat of the parasite is discussed.  相似文献   

18.
Moreau F  Romani R 《Plant physiology》1982,70(5):1385-1390
After preparation on self-generated Percoll gradients, avocado (Persea americana Mill, var. Fuerte and Hass) mitochondria retain a high proportion of cyanide-insensitive respiration, especially with α-ketoglutarate and malate as substrates. Whereas α-ketoglutarate oxidation remains unchanged, the rate of malate oxidation increases as ripening advances through the climacteric. An enhancement of mitochondrial malic enzyme activity, measured by the accumulation of pyruvate, closely parallels the increase of malate oxidation. The capacity for cyanide-insensitive respiration is also considerably enhanced while respiratory control decreases (from 3.3 to 1.7), leading to high state 4 rates.

Both malate dehydrogenase and malic enzyme are functional in state 3, but malic enzyme appears to predominate before the addition of ADP and after its depletion. In the presence of cyanide, a membrane potential is generated when the alterntive pathway is operating. Cyanide-insensitive malate oxidation can be either coupled to the first phosphorylation site, sensitive to rotenone, or by-pass this site. In the absence of phosphate acceptor, malate oxidation is mainly carried out via malic enzyme and the alternative pathway. Experimental modification of the external mitochondrial environment in vitro (pH, NAD+, glutamade) results in changes in malate dehydrogenase and malic enzyme activities, which also modify cyanide resistance. It appears that a functional connection exists between malic enzyme and the alternative pathway via a rotenone-insensitive NADH dehydrogenase and that this pathway is responsible, in part, for nonphosphorylating respiratory activity during the climacteric.

  相似文献   

19.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

20.
Umezurike G. M. and Anya A. O. 1980. Carbohydrate energy metabolism in Fasciola gigantica (Trematoda). International Journal for Parasitology10: 175–180. Adult Fasciola gigantica contained 4.49 ± 0.06 % (mean ± S.D.) wet weight glycogen. Tissue homogenates contained high levels of malate dehydrogenase (MDH), NAD-linked malic enzyme (ME), Phosphoenolpyruvate carboxykinase (PEPCK) and lactate dehydrogenase (LDH). MDH, PEPCK and ME activities appeared to be localized in both cytosolic and mitoehondrial fractions, fumarase activity appeared to be predominantly mitochondrial whereas LDH and pyruvate kinase activities were cytosolic in distribution. Polyacrylamide gel electrophoresis revealed the predominance of LDH-1, LDH-2 and LDH-3 but only traces of LDH-4 and LDH-5 isoenzymes in the crude cytosolic fraction. LDH activity in the crude sample was inhibited by excess substrate (pyruvate). The mitoehondrial system showed NADH -cytochrome c oxidoreductase, succinate-cytochrome c oxidoreductase, NADH oxidase and some cytochrome c-oxygen oxidoreductase activities. Under anaerobic conditions, NADH-fumarate oxidoreductase and succinate-NAD + oxidoreductase activities of mitoehondrial preparations were stimulated in the presence of ADP and ATP respectively. Isolated mitochondria contained rhodoquinone and no ubiquinone, and isolated rhodoquinone was readily reduced by succinate in the presence of submitochondrial particles. Hydrogen peroxide was produced by submitochondrial particles in the presence or absence of KCN or in the presence of fumarate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号