首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational plasticity of the lipid transfer protein SCP2   总被引:1,自引:0,他引:1  
Filipp FV  Sattler M 《Biochemistry》2007,46(27):7980-7991
The nonspecific lipid transfer protein sterol carrier protein 2 (SCP2) is involved in organellar fatty acid metabolism. A hydrophobic cavity in the structure of SCP2 accommodates a wide variety of apolar ligands such as cholesterol derivatives or fatty acyl-coenzyme A (CoA) conjugates. The properties of this nonspecific lipid binding pocket are explored using NMR chemical shift perturbations, paramagnetic relaxation enhancement, amide hydrogen exchange, and 15N relaxation measurements. A common binding cavity shared by different physiological ligands is identified. NMR relaxation measurements reveal that residues in the three C-terminal alpha-helices within the lipid binding region exhibit mobility at fast (picosecond to nanosecond) and slow (microsecond to millisecond) time scales. Ligand binding is associated with a considerable loss of peptide backbone mobility. The observed conformational dynamics in SCP2 may play a role for the access of hydrophobic ligands to an occluded binding pocket. The C-terminal peroxisomal targeting signal of SCP2 is specifically recognized by the Pex5p receptor protein, which conducts cargo proteins toward the peroxisomal organelle. Neither the C-terminal targeting signal nor the N-terminal precursor sequence interferes with lipid binding by SCP2. The alpha-helices involved in lipid binding also mediate a secondary interaction interface with the Pex5p receptor. Silencing of conformational dynamics of the peptide backbone in these helices upon either lipid or Pex5p binding might communicate the loading state of the cargo protein to the targeting receptor.  相似文献   

2.
Huang H  Gallegos AM  Zhou M  Ball JM  Schroeder F 《Biochemistry》2002,41(40):12149-12162
Previous studies showed that the N-terminal 32 amino acids of sterol carrier protein-2 ((1-32)SCP(2)) comprise an amphipathic alpha-helix essential for SCP(2) binding to membranes [Huang et al. (1999) Biochemistry 38, 13231]. However, it is unclear whether membrane interaction of the (1-32)SCP(2) portion of SCP(2) is in itself sufficient to mediate intermembrane sterol transfer, possibly by altering membrane structure. In this study a fluorescent sterol exchange assay was used to resolve these issues and demonstrated that the SCP(2) N-terminal peptide (1-32)SCP(2) did not by itself enhance intermembrane sterol transfer but potentiated the ability of the SCP(2) protein to stimulate sterol transfer. Compared with SCP(2) acting alone, (1-32)SCP(2) potentiated the sterol transfer activity of SCP(2) by increasing the initial rate of sterol transfer by 2.9-fold and by decreasing the half-time of sterol transfer by 10-fold (from 11.6 to 1.2 min) without altering the size of the transferable fractions. The ability of a series of SCP(2) mutant N-terminal peptides to potentiate SCP(2)-mediated sterol transfer was directly correlated with membrane affinity of the respective peptide. N-Terminal peptide (1-32)SCP(2) did not potentiate intermembrane sterol transfer by binding sterol (dehydroergosterol), altering membrane fluidity (diphenylhexatriene) or membrane permeability (leakage assay). Instead, fluorescence lifetime measurements suggested that SCP(2) and (1-32)SCP(2) bound to membranes and thereby elicited a shift in membrane sterol microenvironment to become more polar. In summary, these data for the first time showed that while the N-terminal membrane binding domain of SCP(2) was itself inactive in mediating intermembrane sterol transfer, it nevertheless potentiated the ability of SCP(2) to enhance sterol transfer.  相似文献   

3.
The conversion of the 30-carbon atom sterol, lanosterol, to cholesterol by a series of membrane-bound rat liver enzymes requires one major soluble protein called squalene and sterol carrier protein (SCP). This homogenous low-molecular-weight liver protein was previously known to function with membrane-bound enzymes catalyzing cholesterol synthesis from 27-carbon atom precursor sterols. To define characteristics of the multienzyme system catalyzing lanosterol metabolism and the role of SCP in this process, a rapid spectroscopic assay was developed, i.e., formation of Δ5,7-cholestadienol from lanosterol. In addition to SCP, the cofactor requirements for synthesis of cholesterol from lanosterol are NAD, NADPH, and oxygen. Metal ions, reducing agents, heme, or heme-containing proteins are not required. Another homogeneous, low-molecular-weight protein, which accompanies SCP during purification steps, does not support sterol metabolism by membrane-bound enzymes. The broad functions of SCP in cholesterol synthesis and metabolism coupled with its remarkable abundance (~8% of the liver-soluble proteins), ubiquitous occurrence, and recently discovered functions in fatty acid metabolism suggest SCP plays an important regulatory role in lipid metabolism.  相似文献   

4.
This report concerns the distribution of the hippocampal cholinergic neurostimulating peptide (HCNP) in tissues and organs of 11-day-old Wistar rats. HCNP, originally isolated and purified from the hippocampus of young rats, is an undecapeptide (acetyl-Ala-Ala-Asp-Ile-Ser-Gln-Trp-Ala-Gly-Pro-Leu). HCNP distribution was investigated by using immunohistochemical techniques, employing an affinity-purified rabbit antibody that specifically recognizes HCNP and its 21-kDa precursor protein. Positively stained cells were detected in a variety of tissues and organs, including salivary gland, small intestine, colon, pancreas, bronchiole, adrenal gland, testis, as well as several others. The nerve fibres around blood vessels of almost all organs expressed HCNP. Our results suggest that HCNP or its precursor, or both, may have a specific function not only in the central nervous system, but also in the peripheral nervous system, and possibly in certain specialized duct and gland cells as well.  相似文献   

5.
Sterol carrier protein 2 (SCP2) is a 13-kDa peroxisomal protein, identical to nonspecific lipidtransfer protein, and stimulates various steps of cholesterol metabolism in vitro. Although the name is reminiscent of acyl carrier protein, which is involved in fatty acid synthesis, SCP2 does not bind to lipids specifically or stoichiometrically. This protein is expressed either as a small precursor or as a large fusion (termed SCPx) that carries at its C-terminal the complete sequence of SCP2. SCPx exhibits 3-oxoacyl-CoA thiolase activity, as well as sterol-carrier and lipid-transfer activities. The N- and C-terminal parts of SCPx are similar to the nematode protein P-44 and the yeast protein PXP-18, respectively. P-44, which has no SCP2 sequence, thiolytically cleaved the side chain of bile acid intermediate at a rate comparable to that of SCPx. This, together with the properties of other fusions with SCP2-like sequence, suggests that the SCP2 part of SCPx does not play a direct role in thiolase reaction. PXP-18, located predominantly inside peroxisomes, is similar to SCP2 in primary structure and lipid-transfer activity, and protects peroxisomal acyl-CoA oxidase from thermal denaturation. PXP-18 dimerized at a high temperature, formed an equimolar complex with the oxidase subunit, and released the active enzyme from the complex when the temperature went down. This article attempts to gain insight into the role of SPC2, and to present a model in which PXP-18, a member of the SCP2 family, functions as a molecular chaperone in peroxisomes.  相似文献   

6.
A novel GGNG-related neuropeptide from the polychaete Perinereis vancaurica   总被引:2,自引:0,他引:2  
The GGNG peptides are myoactive peptides so far identified from earthworms and leeches, which are the earthworm excitatory peptides (EEP) and the leech excitatory peptide (LEP), respectively. A novel GGNG peptide was isolated and structurally determined from a marine polychaete, Perinereis vancaurica, using a combination of immunological assay and high performance liquid chromatography (HPLC). The peptide was a pentadecapeptide whose amino acid sequence was similar to that of EEP and LEP, and showed myoactivity on isolated esophagus of P. vancaurica with a threshold concentration of 10(-10)M. The peptide was designated as polychaete excitatory peptide (PEP). Amidation of the alpha-carboxyl group of C-terminal residue occurred in PEP. This is the case for LEP, but not for EEP. The cDNA cloning revealed that the structure of the PEP precursor is more similar to the EEP precursor than to the LEP precursor. Immunohistochemical staining showed the presence of PEP in several neurons of central nervous system (CNS) as somata and neuropile structure, epithelial cells of the pharynx and epidermal cells throughout the body wall. Altogether these results support the physiological significance of PEP in regulation of the CNS neural activity and the peripheral myoactivity.  相似文献   

7.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

8.
A protein extracted from bovine peripheral myelin (BF) and a protein extracted from bovine spinal cord (SCP) have been shown to be identical: the proteins cross-react immunochemicaliy with each other but not with highly purified CNS myelin basic protein. Neither BF nor SCP have anti-encephalitogenic activity. Their electrophoretic behavior is the same at three different pH values. Their apparent molecular weight by sodium dodecyl sulfate-gel electrophoresis is 13,800 ± 550. The amino acid compositions of the proteins are essentially identical. BF and SCP each contain 2 cysteine residues and have valine at the C terminus. The 23 major tryptic peptides are identical on peptide maps. Circular dichroic analyses yield essentially identical curves, which, when computed by best-fit curve analysis, indicate that each has 0%α helix and a large percentage of β structure.  相似文献   

9.
Cloned cDNAs encoding the precursor protein for motilin and a novel peptide, motilin-associated peptide, were isolated from a library derived from porcine intestinal mucosa mRNA. Nucleotide sequence analysis predicts a precursor protein of 119 amino acids including a signal peptide in direct linkage with the 22 amino acid sequence for motilin, and a 70 amino acid peptide of unknown function. The putative bioactive moieties are separated by Lys-Lys, dibasic residues that serve as substrates for cleavage by proteolytic maturation enzymes in many polyprotein precursors. While there is an abundant literature detailing a spectrum of tissues and cell types which express motilin like immunoreactivity, analysis of mRNA derived from many of these tissues suggests that the mRNA for the mucosal motilin precursor is only transcribed in this tissue. The nature of the immunoreactive material in the central nervous system and other peripheral tissues remains to be determined.  相似文献   

10.
Hsu SY  Hsueh AJ 《Nature medicine》2001,7(5):605-611
Adaptive stress responses mediated by the endocrine, autonomic, cardiovascular and immune systems are essential for the survival of the individual. Initial stress-induced responses provide a vital short-term metabolic lift, but prolonged or inappropriate exposure to stress can compromise homeostasis thereby leading to disease. This 'fight-or-flight' response is characterized by the activation of the corticotropin-releasing hormone (CRH)-adrenocorticotropin-glucocorticoid axis, mediated by the type 1 CRH receptor. In contrast, the type 2 CRH receptor mediates the stress-coping responses during the recovery phase of stress. We identified human stresscopin (SCP) and stresscopin-related peptide (SRP) as specific ligands for the type 2 CRH receptor. The genes encoding these peptides were expressed in diverse peripheral tissues as well as in the central nervous system. Treatment with SCP or SRP suppressed food intake, delayed gastric emptying and decreased heat-induced edema. Thus SCP and SRP might represent endogenous ligands for maintaining homeostasis after stress, and could allow the design of drugs to ameliorate stress-related diseases.  相似文献   

11.
Cholesterol side-chain cleavage (CSCC) in isolated rat adrenal mitochondria is enhanced by prior corticotropin (ACTH) stimulation in vivo (8-fold). Part of this stimulation is retained in vitro by addition of cytosol from ACTH-stimulated adrenals to mitochondria from unstimulated rats (2.5- to 6-fold). In vivo cycloheximide (CX) treatment fully inhibits the in vivo response and resolves the in vitro cytosolic stimulation into components: (i) ACTH-sensitive, CX-sensitive; (ii) ACTH-sensitive, CX-insensitive; and (iii) ACTH-insensitive, CX-insensitive. These components contribute approximately equally to stimulation by ACTH cytosol. Components (i) and (iii) most probably correspond to previously identified cytosolic constituents steroidogenesis activator peptide and sterol carrier protein 2 (SCP2). SCP2, as assayed by radioimmunoassay or ability to stimulate 7-dehydrocholesterol reductase, was not elevated in adrenal cytosol or other subcellular fractions by ACTH treatment. Complete removal of SCP2 from cytosol by treatment with anti-SCP2 IgG decreased cytosolic stimulatory activity by an increment that was independent of ACTH or CX treatment. Addition of an amount of SCP2, equivalent to that present in cytosol, restored activity to SCP2-depleted cytosol but had no effect alone or when added with intact cytosol, suggesting the presence of a factor in cytosol that potentiates SCP2 action. Pure hepatic SCP2 stimulated CX mitochondrial CSCC 1.5- to 2-fold (EC50 0.7 microM) but was five times less potent than SCP2 in adrenal cytosol. Two pools of reactive cholesterol were distinguished in these preparations characterized, respectively, by succinate-supported activity and by additional isocitrate-supported activity. ACTH cytosol and SCP2 each stimulated cholesterol availability to a fraction of mitochondrial P450scc that was reduced by succinate but failed to stimulate availability to additional P450scc reduced only by isocitrate.  相似文献   

12.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

13.
A hepta-peptide, Arg-Leu-Leu-Pro-Ser-Leu-Gly, which has a sequence involved in the extra peptides of mitochondrial proteins, was synthesized chemically. The peptide was found to bind specifically to mitochondria, but not to microsomes. The binding was blocked by pretreatment of mitochondria with trypsin but was not affected by the presence of apocytochrome c. The synthetic peptide inhibited the binding to mitochondria of the precursor protein of ATPase inhibitor, which was synthesized in vitro, but did not inhibit that of the precursor of the 9 K stabilizing factor, which has an entirely different extra-peptide sequence. The peptide also did not inhibit the binding of apocytochrome c. These results suggest the existence of a common protein receptor on mitochondrial membranes that facilitates entrance of a group of mitochondrial precursor proteins, including pre-ATPase inhibitor.  相似文献   

14.
Corn coleoptile lectin is present with beta-glucosidase (EC. 3.2.1.2.1) in a single tightly bound molecular association complex (88.7 kDa). SDS-PAGE of the molecular complex dissociates into two main components. Of these, at a concentration of 75%, the corn coleoptile beta-glucosidase (60 kDa) is identified by enzymatic activity, with two 16-amino acid tryptic peptides displaying close homology with the primary structure of the enzyme. In separate experiments, we isolated homogenous monomeric enzyme of corn coleoptile. This allowed us to conclude that lectin properties like erythrocyte agglutination, found in the (88.7 kDa) molecular complex, is not due to the beta-glucosidase bound in it. Another protein (30 kDa) dissociated from the same SDS-PAGE gels rendered several tryptic peptides, including a 20-amino acid sequence V(L)GP(Q)W(A)GGSGGSPVDITAEPQR closely homologous to the putative beta-glucosidase aggregating factor (BGAF) precursor described recently. Tryptic peptide SAFTE(A)WN(V)ELK(V) was also present in the BGAF precursor. KFHEQR peptide was not present in BGAF precursor or any other protein sequence examined. Tryptic peptide TYGPFGA showed good homology with the BGAF precursor protein, FEGLYLFHTPLGSGAN peptide displayed identity with the BGAF precursor sequence. Thus, the 30 kDa protein does not appear to be identical to BGAF, but is rather a similar molecule which could be endowed with the lectin properties of the 88.7 kDa molecular complex.  相似文献   

15.
16.
Katada  Eiichi  Ojika  Kosei  Mitake  Shigehisa  Ueda  Ryuzo 《Brain Cell Biology》2000,29(3):199-207
A novel peptide, hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, affects the development of specific cholinergic neurons of the central nervous system in vitro. In this study, HCNP-like-immunoreactive nerve processes and nerve cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the circular muscle layer and around the submucosal blood vessels. In the submucosal and myenteric plexuses, some HCNP-like-immunopositive nerve cell bodies and nerve fibers were present. The reaction product was deposited on the membranes of various subcellular organelles, including the rough endoplasmic reticulum, Golgi saccules, ovoid electron-lucent synaptic vesicles in axon terminals associated with submucosal and myenteric plexuses, and the outer membranes of a few mitochondria. The synaptic vesicles of HCNP-like-positive terminals were 60–85 nm in diameter. The present data provide direct immunocytochemical evidence that HCNP-like-positive nerve cell bodies and nerve fibers are present in the submucosal and myenteric plexuses of the rat small intestine. An immunohistochemical light microscopic study using mirror-image sections revealed that in both the submucosal and myenteric ganglia, almost all choline acetyltransferase (ChAT)-immunoreactive neurons were also immunoreactive for HCNP. These observations suggest (i) that HCNP proper and/or HCNP precursor protein is a membrane-associated protein with a widespread subcellular distribution, (ii) that HCNP precursor protein may be biosynthesized within neurons localized in the rat enteric nervous system, and (iii) that HCNP proper and/or HCNP precursor protein are probably stored in axon terminals.  相似文献   

17.
The cellular colocalization of LOX2 protein and small cardioactive peptide (SCP)-like immunoreactivity was studied in the nerve cord of the glossiphoniid leech Helobdella triserialis. Of the six neurons that express SCP in the midbody segments 7 to 17, only one, the MPS neuron, expresses LOX2 protein. The medial paired SCP (MPS) neurons are segmentally repeated and can be divided into three contiguous segmental domains according to cell body size and the timing and level of SCP expression. MPS neurons located in the anterior and middle segmental domains express LOX2 protein. In the middle domain, large MPS neurons begin to accumulate SCP shortly after the end of embryonic development, whereas in the anterior domain the MPS neurons are smaller and begin to express SCP at a later stage. In the posterior domain the MPS neurons exhibit a third phenotype—they have large cell bodies, express low levels of SCP starting from the midjuvenile stage, and do not show detectable LOX2 expression. Lineage tracer injections showed that the MPS neurons arise from a stereotyped cell lineage and are descended from the O teloblast stem cell. In midbody ganglia 2 to 6 and 18 to 21, there are lineally homologous neurons that do not express either LOX2 protein or SCP. Thus, the boundaries of LOX2 expression coincide precisely with two of the segmental boundaries of MPS differentiation, suggesting that expression of Lox2 at the level of this single identified neuron governs some, but not all, aspects of the neuron's segmental diversification. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The amyloid precursor protein (APP) is a transmembrane protein expressed in several cell types. In the nervous system, APP is expressed by glial and neuronal cells, and several lines of evidence suggest that it plays a role in normal and pathological phenomena. To address the question of the actual function of APP in normal developing neurons, we undertook a study aimed at blocking APP expression using antisense oligonucleotides. Oligonucleotide internalization was achieved by linking them to a vector peptide that translocates through biological membranes. This original technique, which is very efficient and gives direct access to the cell cytosol and nucleus, allowed us to work with extracellular oligonucleotide concentrations between 40 and 200 nM. Internalization of antisense oligonucleotides overlapping the origin of translation resulted in a marked but transient decrease in APP neosynthesis that was not observed with the vector peptide alone, or with sense oligonucleotides. Although transient, the decrease in APP neosynthesis was sufficient to provoke a distinct decrease in axon and dendrite outgrowth by embryonic cortical neurons developing in vitro. The latter decrease was not accompanied by changes in the spreading of the cell bodies. A single exposure to coupled antisense oligonucleotides at the onset of the culture was sufficient to produce significant morphological effects 6, 18, and 24 h later, but by 42 h, there were no remaining significant morphologic changes. This report thus demonstrates that amyloid precursor protein plays an important function in the morphological differentiation of cortical neurons in primary culture.  相似文献   

19.
Alphaviruses are enveloped, insect-borne viruses, which contain a positive-sense RNA genome. The protein capsid is surrounded by a lipid membrane, which is penetrated by glycoprotein spikes. The structure of the Sindbis virus (SINV) (the type virus) core protein (SCP) was previously determined and found to have a chymotrypsin-like structure. SCP is a serine proteinase which cleaves itself from a polyprotein. Semliki Forest virus (SFV) is among the most distantly related alphaviruses to SINV. Similar to SCP, autocatalysis is inhibited in SFCP after cleavage of the polyprotein by leaving the carboxy-terminal tryptophan in the specificity pocket. The structures of two different crystal forms (I and II) of SFV core protein (SFCP) have been determined to 3.0 Å and 3.3 Å resolution, respectively. The SFCP monomer backbone structure is very similar to that of SCP. The dimeric association between monomers, A and B, found in two different crystal forms of SCP is also present in both crystal forms of SFCP. However, a third monomer, C, occurs in SFCP crystal form I. While monomers A and B make a tail-to-tail dimer contact, monomers B and C make a head-to-head dimer contact. A hydrophobic pocket on the surface of the capsid protein, the proposed site of binding of the E2 glycoprotein, has large conformational differences with respect to SCP and, in contrast to SCP, is found devoid of bound peptide. In particular, Tyr184 is pointing out of the hydrophobic pocket in SFCP, whereas the equivalent tyrosine in SCP is pointing into the pocket. The conformation of Tyr184, found in SFCP, is consistent with its availability for iodination, as observed in the homologous SINV cores. This suggests, by comparison with SCP, that E2 binding to cores causes major conformational changes, including the burial of Tyr184, which would stabilize the intact virus on budding from an infected cell. The head-to-tail contacts found in the pentameric and hexameric associations within the virion utilize the same monomer surface regions as found in the crystalline dimer interfaces. Proteins 27:345–359, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Of the six herpesvirus capsid proteins, the smallest capsid proteins (SCPs) share the least sequence homology among herpesvirus family members and have been implicated in virus specificity during infection. The herpes simplex virus-1 (HSV-1) SCP was shown to be horn shaped and to specifically bind the upper domain of each major capsid protein in hexons but not in pentons. In Kaposi's sarcoma-associated herpesvirus (KSHV), the protein encoded by the ORF65 gene (pORF65) is the putative SCP but its location remains controversial due to the absence of such horn-shaped densities from both the pentons and hexons of the KSHV capsid reconstructions. To directly locate the KSHV SCP, we have used electron cryomicroscopy and three-dimensional reconstruction techniques to compare the three-dimensional structure of KSHV capsids to that of anti-pORF65 antibody-labeled capsids. Our difference map shows prominent antibody densities bound to the tips of the hexons but not to pentons, indicating that KSHV SCP is attached to the upper domain of the major capsid protein in hexons but not to that in pentons, similar to HSV-1 SCP. The lack of horn-shaped densities on the hexons indicates that KSHV SCP exhibits structural features that are substantially different from those of HSV-1 SCP. The location of SCP at the outermost regions of the capsid suggests a possible role in mediating capsid interactions with the tegument and cytoskeletal proteins during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号