首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution.  相似文献   

2.
Rat liver and Trypanosoma cruzi tyrosine aminotransferases (TATs) share over 40% sequence identity, but differ in their substrate specificities. To explore the molecular features related to these differences, comparative mutagenesis studies were conducted on full length T. cruzi TAT and N-terminally truncated rat TAT recombinant enzymes. The functionality of Arg315 and Arg417 in rat TAT was investigated for comparison with the conserved Arg292 and Arg386 in aspartate and bacterial aromatic aminotransferases (ASATs and ARATs). The rat TAT Arg315Lys variant remained fully active indicating that, as in T. cruzi TAT and contrary to subfamily Ialpha aminotransferases, this residue is not critical for activity. In contrast, the Arg417Gln variant was inactive. The catalytic relevance of the putative rat TAT active site residues Asn54 and Arg57, which are strictly conserved in TATs (Asn17 and Arg20 in T. cruzi TAT) but differ in ASATs and ARATs, was also explored. The substitutions Arg57Ala and Arg57Gln abolished enzymatic activity of these mutants. In both variants, spectral studies demonstrated that aromatic but not dicarboxylic substrates could efficiently bind in the active site. Thus, Arg57 appears to be functionally equivalent to Arg292 of ASATs and ARATs. Asn54 also appears to be involved in the catalytic mechanism of rat TAT since its exchange for Ser lowered the k(cat)/K(m) ratios towards its substrates. Mutation of the analogous residues in T. cruzi TAT also lowered the catalytic efficiencies (k(cat)/K(m)) of the variants substantially. The results imply that the mamalian TAT is more closely related to the T. cruzi TAT than to ASATs and ARATs.  相似文献   

3.
Poly(ADP-ribose) polymerase (PARP) is regarded as a target protein for paclitaxel (PTX) to bind. An important issue is to identify the key residues as active sites for PTX interacting with PARP, which will help to understand the potential drug activity of PTX against cancer cells. Using docking method and MD simulation, we have constructed a refined structure of PTX docked on the catalytic function domain of PARP (PDB code: 1A26). The residues Glu327(988), Tyr246(907), Lys242(903), His165(826), Asp105(766), Gln102(763) and Gln98(759) in PARP are identified as potential sites involved in interaction with PTX according to binding energy (E(b)) between PTX and single residue calculated with B3LYP/6-31G(d,p). These residues form an active binding pocket located on the surface of the catalytic fragment, possibly interacting with the required groups of PTX leading to its activity against cancer cells. It is noted that most of the active sites make conatct with the "southern hemisphere" of PTX except for one residue, Tyr246(907), which interacts with the "northern hemisphere" of PTX. The conformation of PTX in complex with the catalytic fragment is observed as being T-shaped, similar to that complexed with β-tubulin. The total Eb of -269.9 kJ/mol represents the potent interaction between PTX and the catalytic fragment, implying that PTX can readily bind to the active pocket. The tight association of PTX with the catalytic fragment would inhibit PARP activation, suggesting a potential application of PTX as an effective antineoplastic agent.  相似文献   

4.
The essential biosynthetic pathway to l-Lysine in bacteria and plants is an attractive target for the development of new antibiotics or herbicides because it is absent in humans, who must acquire this amino acid in their diet. Plants use a shortcut of a bacterial pathway to l-Lysine in which the pyridoxal-5'-phosphate (PLP)-dependent enzyme ll-diaminopimelate aminotransferase (LL-DAP-AT) transforms l-tetrahydrodipicolinic acid (L-THDP) directly to LL-DAP. In addition, LL-DAP-AT was recently found in Chlamydia sp., suggesting that inhibitors of this enzyme may also be effective against such organisms. In order to understand the mechanism of this enzyme and to assist in the design of inhibitors, the three-dimensional crystal structure of LL-DAP-AT was determined at 1.95 A resolution. The cDNA sequence of LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT) was optimized for expression in bacteria and cloned in Escherichia coli without its leader sequence but with a C-terminal hexahistidine affinity tag to aid protein purification. The structure of AtDAP-AT was determined using the multiple-wavelength anomalous dispersion (MAD) method with a seleno-methionine derivative. AtDAP-AT is active as a homodimer with each subunit having PLP in the active site. It belongs to the family of type I fold PLP-dependent enzymes. Comparison of the active site residues of AtDAP-AT and aspartate aminotransferases revealed that the PLP binding residues in AtDAP-AT are well conserved in both enzymes. However, Glu97* and Asn309* in the active site of AtDAP-AT are not found at similar positions in aspartate aminotransferases, suggesting that specific substrate recognition may require these residues from the other monomer. A malate-bound structure of AtDAP-AT allowed LL-DAP and L-glutamate to be modelled into the active site. These initial three-dimensional structures of LL-DAP-AT provide insight into its substrate specificity and catalytic mechanism.  相似文献   

5.
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.  相似文献   

6.
Q X Hua  S E Shoelson  M A Weiss 《Biochemistry》1992,31(47):11940-11951
Insulin's mechanism of receptor binding is not well understood despite extensive study by mutagenesis and X-ray crystallography. Of particular interest are "anomalous" analogues whose bioactivities are not readily rationalized by crystal structures. Here the structure and dynamics of one such analogue (GlyB24-insulin) are investigated by circular dichroism (CD) and isotope-aided 2D-NMR spectroscopy. The mutant insulin retains near-native receptor-binding affinity despite a nonconservative substitution (PheB24-->Gly) in the receptor-binding surface. Relative to native insulin, GlyB24-insulin exhibits reduced dimerization; the monomer (the active species) exhibits partial loss of ordered structure, as indicated by CD studies and motional narrowing of selected 1H-NMR resonance. 2D-NMR studies demonstrate that the B-chain beta-turn (residues B20-23) and beta-strand (residues B24-B28) are destabilized; essentially native alpha-helical secondary structure (residues A3-A8, A13-A18, and B9-B19) is otherwise maintained. 13C-Isotope-edited NOESY studies demonstrate that long-range contacts observed between the B-chain beta-strand and the alpha-helical core in native insulin are absent in the mutant. Implications for the mechanism of insulin's interaction with its receptor are discussed.  相似文献   

7.
Analysis of the distances of the exposed residues in 175 enzymes from the centroids of the molecules indicates that catalytic residues are very often found among the 5% of residues closest to the enzyme centroid. This property of catalytic residues is implemented in a new prediction algorithm (named EnSite) for locating the active sites of enzymes and in a new scheme for re-ranking enzyme-ligand docking solutions. EnSite examines only 5% of the molecular surface (represented by surface dots) that is closest to the centroid, identifying continuous surface segments and ranking them by their area size. EnSite ranks the correct prediction 1-4 in 97% of the cases in a dataset of 65 monomeric enzymes (rank 1 for 89% of the cases) and in 86% of the cases in a dataset of 176 monomeric and multimeric enzymes from all six top-level enzyme classifications (rank 1 in 74% of the cases). Importantly, identification of buried or flat active sites is straightforward because EnSite "looks" at the molecular surface from the inside out. Detailed examination of the results indicates that the proximity of the catalytic residues to the centroid is a property of the functional unit, defined as the assembly of domains or chains that form the active site (in most cases the functional unit corresponds to a single whole polypeptide chain). Using the functional unit in the prediction further improves the results. The new property of active sites is also used for re-evaluating enzyme-inhibitor unbound docking results. Sorting the docking solutions by the distance of the interface to the centroid of the enzyme improves remarkably the ranks of nearly correct solutions compared to ranks based on geometric-electrostatic-hydrophobic complementarity scores.  相似文献   

8.
Scorpion alpha-toxins are similar in their mode of action and three-dimensional structure but differ considerably in affinity for various voltage-gated sodium channels (NaChs). To clarify the molecular basis of the high potency of the alpha-toxin LqhalphaIT (from Leiurus quinquestriatus hebraeus) for insect NaChs, we identified by mutagenesis the key residues important for activity. We have found that the functional surface is composed of two distinct domains: a conserved "Core-domain" formed by residues of the loops connecting the secondary structure elements of the molecule core and a variable "NC-domain" formed by a five-residue turn (residues 8-12) and a C-terminal segment (residues 56-64). We further analyzed the role of these domains in toxin activity on insects by their stepwise construction onto the scaffold of the anti-mammalian alpha-toxin, Aah2 (from Androctonus australis hector). The chimera harboring both domains, Aah2(LqhalphaIT(face)), was as active to insects as LqhalphaIT. Structure determination of Aah2(LqhalphaIT(face)) by x-ray crystallography revealed that the NC-domain deviates from that of Aah2 and forms an extended protrusion off the molecule core as appears in LqhalphaIT. Notably, such a protrusion is observed in all alpha-toxins active on insects. Altogether, the division of the functional surface into two domains and the unique configuration of the NC-domain illuminate the molecular basis of alpha-toxin specificity for insects and suggest a putative binding mechanism to insect NaChs.  相似文献   

9.
Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metab- olism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyri- doxal 5′-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is imple- mented via the “lock and key” mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine for- mation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal tempera- ture, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.  相似文献   

10.
Tian G  Xiang S  Noiva R  Lennarz WJ  Schindelin H 《Cell》2006,124(1):61-73
Protein disulfide isomerase plays a key role in catalyzing the folding of secretory proteins. It features two catalytically inactive thioredoxin domains inserted between two catalytically active thioredoxin domains and an acidic C-terminal tail. The crystal structure of yeast PDI reveals that the four thioredoxin domains are arranged in the shape of a twisted "U" with the active sites facing each other across the long sides of the "U." The inside surface of the "U" is enriched in hydrophobic residues, thereby facilitating interactions with misfolded proteins. The domain arrangement, active site location, and surface features strikingly resemble the Escherichia coli DsbC and DsbG protein disulfide isomerases. Biochemical studies demonstrate that all domains of PDI, including the C-terminal tail, are required for full catalytic activity. The structure defines a framework for rationalizing the differences between the two active sites and their respective roles in catalyzing the formation and rearrangement of disulfide bonds.  相似文献   

11.
Moll M  Klenk HD  Maisner A 《Journal of virology》2002,76(14):7174-7186
The generation of replication-competent measles virus (MV) depends on the incorporation of biologically active, fusogenic glycoprotein complexes, which are required for attachment and penetration into susceptible host cells and for direct virus spread by cell-to-cell fusion. Whereas multiple studies have analyzed the importance of the ectodomains of the MV glycoproteins hemagglutinin (H) and fusion protein (F), we have investigated the role of the cytoplasmic tails of the F and H proteins for the formation of fusogenic complexes. Deletions in the cytoplasmic tails of transiently expressed MV glycoproteins were found to have varying effects on receptor binding, fusion, or fusion promotion activity. F tail truncation to only three amino acids did not affect fusion capacity. In contrast, truncation of the H cytoplasmic tail was limited. H protein mutants with cytoplasmic tails of <14 residues no longer supported F-mediated cell fusion, predominantly due to a decrease in surface expression and receptor binding. This indicates that a minimal length of the H protein tail of 14 amino acids is required to ensure a threshold local density to have sufficient accumulation of fusogenic H-F complexes. By using reverse genetics, a recombinant MV with an F tail of three amino acids (rMV-FcDelta30), as well as an MV with an H tail of 14 residues (rMV-HcDelta20), could be rescued, whereas generation of viruses with shorter H tails failed. Thus, glycoprotein truncation does not interfere with the successful generation of recombinant MV if fusion competence is maintained.  相似文献   

12.
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.  相似文献   

13.
Aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8 (ttAspAT), has been believed to be specific for an acidic substrate. However, stepwise introduction of mutations in the active-site residues finally changed its substrate specificity to that of a dual-substrate enzyme. The final mutant, [S15D, T17V, K109S, S292R] ttAspAT, is active toward both acidic and hydrophobic substrates. During the course of stepwise mutation, the activities toward acidic and hydrophobic substrates changed independently. The introduction of a mobile Arg292* residue into ttAspAT was the key step in the change to a "dual-substrate" enzyme. The substrate recognition mechanism of this thermostable "dual-substrate" enzyme was confirmed by X-ray crystallography. This work together with previous studies on various enzymes suggest that this unique "dual-substrate recognition" mechanism is a feature of not only aminotransferases but also other enzymes.  相似文献   

14.
15.
Tropomyosin is a coiled coil that associates N-terminus to C-terminus to form a continuous strand along both sides of the actin filament and regulates its function. One long, high molecular weight tropomyosin molecule spans the length of seven actin subunits. In these forms there is a 7-fold periodicity in noninterface residues that have been proposed to correspond to seven quasi-equivalent actin binding sites. Interruption of the stable, canonical coiled coil by residues that destabilize the interhelical interface, such as Ala clusters, is required for actin binding. Previous studies have shown that the N-terminal half of period 5 (residues 165-188) is critical for actin binding and regulatory function and that both the surface "consensus" residues and the embedded, destabilizing Ala cluster are required for function. In the present work we test the hypothesis of quasi-equivalence of tropomyosin's periodic sites by replacing the proposed binding sites by substituting the crucial period 5 region with regions of period 1 or 2. Replacement mutants were designed to test the importance of the coincidence of the consensus residues and a destabilizing interface. The results show that generic (interface instability) and specific periodic surface residues are essential for function and that the periods tested (periods 1, 2, and 5) are quasi-equivalent for actin binding. However, regulatory functions are period-specific: periods 1 and 5 for binding to actin in the force-producing state and period 5 for Ca2+-dependent regulation with troponin.  相似文献   

16.
Pyridoxamine-pyruvate aminotransferase is a PLP (pyridoxal 5'-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine-pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the alpha family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429-432]. The K(d) value for pyridoxal determined by means of CD was 100-fold lower than the K(m) value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed.  相似文献   

17.
Lattice models have been previously used to model ligand diffusion on protein surfaces. Using such models, it has been shown that the presence of pathways (or 'chreodes') of consecutive residues with certain properties can decrease the number of steps required for the arrival of a ligand at the active site. In this work, we show that, based on a genetic algorithm, ligand-diffusion pathways can evolve on a protein surface, when this surface is selected for shortening the travel length toward the active site. Biological implications of these results are discussed.  相似文献   

18.
Distinct functional surface regions on ubiquitin   总被引:6,自引:0,他引:6  
The characterized functions of the highly conserved polypeptide ubiquitin are to target proteins for proteasome degradation or endocytosis. The formation of a polyubiquitin chain of at least four units is required for efficient proteasome binding. By contrast, monoubiquitin serves as a signal for the endocytosis of plasma membrane proteins. We have defined surface residues that are important for ubiquitin's vital functions in Saccharomyces cerevisiae. Surprisingly, alanine scanning mutagenesis showed that only 16 of ubiquitin's 63 surface residues are essential for vegetative growth in yeast. Most of the essential residues localize to two hydrophobic clusters that participate in proteasome recognition and/or endocytosis. The others reside in or near the tail region, which is important for conjugation and deubiquitination. We also demonstrate that the essential residues comprise two distinct functional surfaces: residues surrounding Phe(4) are required for endocytosis, whereas residues surrounding Ile(44) are required for both endocytosis and proteasome degradation.  相似文献   

19.
Branched-chain aminotransferases (BCAT), which utilize pyridoxal 5′-phosphate (PLP) as a cofactor, reversibly catalyze the transfer of the α-amino groups of three of the most hydrophobic branched-chain amino acids (BCAA), leucine, isoleucine, and valine, to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The BCAT from Deinococcus radiodurans (DrBCAT), an extremophile, was cloned and expressed in Escherichia coli for structure and functional studies. The crystal structures of the native DrBCAT with PLP and its complexes with l-glutamate and α-ketoisocaproate (KIC), respectively, have been determined. The DrBCAT monomer, comprising 358 amino acids, contains large and small domains connected with an interdomain loop. The cofactor PLP is located at the bottom of the active site pocket between two domains and near the dimer interface. The substrate (l-glutamate or KIC) is bound with key residues through interactions of the hydrogen bond and the salt bridge near PLP inside the active site pocket. Mutations of some interaction residues, such as Tyr71, Arg145, and Lys202, result in loss of the specific activity of the enzymes. In the interdomain loop, a dynamic loop (Gly173 to Gly179) clearly exhibits open and close conformations in structures of DrBCAT without and with substrates, respectively. DrBCAT shows the highest specific activity both in nature and under ionizing radiation, but with lower thermal stability above 60°C, than either BCAT from Escherichia coli (eBCAT) or from Thermus thermophilus (HB8BCAT). The dimeric molecular packing and the distribution of cysteine residues at the active site and the molecular surface might explain the resistance to radiation but small thermal stability of DrBCAT.  相似文献   

20.
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; "active" Lys have a pK of 8.9, while "normal" Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号