首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.  相似文献   

2.

Background  

A major determinant of influenza infection is the presence of virus receptors on susceptible host cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal) linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal) linked receptors. To date, there has been no detailed account published on the distribution of SA receptors in the pig, a model host that is susceptible to avian and human influenza subtypes, thus with potential for virus reassortment. We examined the relative expression and spatial distribution of SAα2,3-GalG(1-3)GalNAc and SAα2,6-Gal receptors in the major organs from normal post-weaned pigs by binding with lectins Maackia amurensis agglutinins (MAA II) and Sambucus nigra agglutinin (SNA) respectively.  相似文献   

3.
The initial step essential in influenza virus infection is specific binding of viral hemagglutinin to host cell-surface glycan receptors. Influenza A virus specificity for the host is mediated by viral envelope hemagglutinin, that binds to receptors containing glycans with terminal sialic acids. Human viruses preferentially bind to α2→6 linked sialic acids on receptors of host cells, whereas avian viruses are specific for the α2→3 linkage on the target cells. Human influenza virus isolates more efficiently infect amniotic membrane (AM) cells than chorioallantoic membrane (CAM) cells. N-glycans were isolated from AM and CAM cells of 10-day-old chicken embryonated eggs and their structures were analyzed by multi-dimensional HPLC mapping and MALDI-TOF-MS techniques. Terminal N-acetylneuraminic acid contents in the two cell types were similar. However, molar percents of α2→3 linkage preferentially bound by avian influenza virus were 27.2 in CAM cells and 15.4 in AM cells, whereas those of α2→6 linkage favored by human influenza virus were 8.3 (CAM) and 14.2 (AM). Molar percents of sulfated glycans, recognized by human influenza virus, in CAM and AM cells were 3.8 and 12.7, respectively. These results have revealed structures and molar percents of N-glycans in CAM and AM cells important in determining human and avian influenza virus infection and viral adaptation.  相似文献   

4.
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)‐binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.  相似文献   

5.
The avian influenza H5N1 virus has emerged as an important pathogen, causing severe disease in humans and posing a pandemic threat. Substrate specificity is crucial for the virus to obtain the ability to spread from avian to human. Therefore, an investigation of the binding properties of ligands at the molecular level is important for understanding the catalytic mechanism of the avian influenza virus neuraminidase and for designing novel and specific inhibitors of H5N1 neuraminidase. Based on the available crystal structure of H5N1, we have characterized the binding properties between sialic acid, methyl 3’sialyllactoside, methyl 6’sialyllactoside and the H5N1 influenza virus neuraminidase using molecular docking and molecular dynamics simulations. Obtained molecular dynamics trajectories were analyzed in terms of ligand conformations, N1-ligand interactions, and in terms of loop flexibility. It was found that in the N1-SA complex the sialic acid ring undergoes a transition from the B 2,5 to the 2 C 5 conformation. However, in the N1-3SL and N1-6SL complexes sialic acid remained in the distorted boat conformation. The obtained results indicate that 3SL has only weak interactions with the 150-loop, whereas the N1-6SL complex shows strong interactions. Most of the differences arise from the various conformations around the glycosidic linkage, between the sialic acid and galactose, which facilitate the above interactions of 6SL with the enzyme, and as a consequence the interactions between the 150- and 430- loops. This finding suggests that the altered flexibility of loops in and around the active site is one of the reasons why the avian N1 preferentially cleaves sialic acid from α-(2-3)-Gal glycoconjugates over α-(2-6)-Gal. These molecular modeling results are consistent with available experimental results on the specificity of N1.  相似文献   

6.
To elucidate the molecular mechanisms of transmission of influenza viruses between different host species, such as human and birds, binding properties of sialic acid-containing carbohydrates that are recognized by human and/or avian influenza viruses were characterized by the surface plasmon resonance (SPR) method. Differences in the binding of influenza viruses to three gangliosides were monitored in real-time and correlated with receptor specificity between avian and human viruses. SPR analysis with ganglioside-containing lipid bilayers demonstrated the recognition profile of influenza viruses to not only sialic acid linkages, but also core carbohydrate structures on the basis of equilibrated rate constants. Kinetic analysis showed different binding preferences to gangliosides between avian and human strains. An avian strain bound to Neu5Acα2-3nLc4Cer with much slower dissociation rate than its sialyl-linkage analog, Neu5Acα2-6nLc4Cer, on the lipid bilayer. In contrast, a human strain bound equally to both gangliosides. An avian strain, but not a human strain, also interacted with GM3 carrying a shorter carbohydrate chain. Our findings demonstrated the remarkable distinction in the binding kinetics of sialic acid-containing carbohydrates between avian and human influenza viruses on the lipid bilayer.  相似文献   

7.
The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the alpha2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the alpha2,6 and the alpha2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor.  相似文献   

8.
Interspecies transmission (host switching/jumping) of influenza viruses is a key scientific question that must be addressed. In addition to the vigorous research on highly pathogenic avian influenza viruses (HPAIVs), studies of the mechanism of interspecies transmission of low-pathogenic avian influenza viruses (LPAIVs) could also provide insights into host tropism and virulence evolution. Influenza A viruses harboring hemagglutinin (HA) H13 (e.g., H13N6) are LPAIVs. In this study, soluble H13 HA glycoprotein was purified, and its receptor binding activity was characterized. The results revealed that H13 exclusively binds the avian α2-3-linked sialic acid receptor; no binding to the mammalian α2-6-linked sialic acid receptor was detected. Furthermore, the molecular basis of the H13 receptor binding specificity was revealed by comparative analysis of the crystal structures of both receptor-bound H13 and H5 HAs, which might be contributed by the hydrophobic residue V186. Work with an H13N186 mutant confirmed the importance of V186 in the receptor binding specificity of H13 HA, which shows that the mutant protein reduced the binding of an avian receptor analog but increased the binding of a human receptor analog. Detailed structural analysis also demonstrated that the conserved binding sites of the recently well-studied broadly neutralizing human monoclonal antibodies targeting the HA2 domain are found in H13. Our results expand our understanding of virulence evolution, receptor binding preference, and species tropism of the LPAIVs and HPAIVs.  相似文献   

9.
If we predict the host range of new or mutant influenza virus in advance, we are able to measure against pandemic human influenza immediately after the new virus emerges somewhere. Influenza viral hemagglutinin(HA)–sialoside receptor interaction is a target event for in silico chemical prediction studies about the virus host range determination. We theoretically studied avian and human influenza A virus HA H3 subtype complexed with avian or human type receptor Neu5Acα(2-3 or 2-6)Gal analogues by ab initio fragment molecular orbital (FMO) method at the second order Møller–Plesset (MP2)/6–31G level, which can evaluate correctly not only electrostatic interactions but also lipophilic interactions based on van der Waals dispersion force. Avian H3 bound to avian α2-3 11.4 kcal/mol stronger than to human α2-6 in the model complexes with taking account of intermolecular lipophilic interaction. A substitution at the position 226 between Gln(avian) and Leu(human) on influenza H3 HA1 has altered its virus host range between avian and human. In the ab initio FMO studies, binding energy of avian Gln226Leu H3–human α2-6 was quite similar to that in the human H3–human α2-6 complex with amino acid sequence differences at nine positions in the models. This similarity indicates that avian Gln226Leu H3 virus can infect human with the same level as human H3 virus. Opposite mutation Leu226Gln in the human H3 gave the moderate binding energies to avian α2-3 with similarity to avian H3–α2-3 complex that supported our previous virus-sialoside binding assay. Ab initio FMO studies have revealed the relationship between influenza H3 virus host range and H3–α(2-3 or 2-6) receptors binding. Our theoretical approach may predict the infectious level of new viruses and point out some unknown dangerous mutation positions on HA in advance.  相似文献   

10.
The receptor binding specificity of influenza A virus is one of the major determinants of viral tropism and host specificity. In general, avian viral hemagglutinin prefers to bind to α2,3-linked sialic acid, whereas the human viral hemagglutinin prefers to bind to α2,6-linked sialic acid. Here, we demonstrate that host fibronectin protein plays an important role in the life cycle of some influenza A viruses. Treating cells with anti-fibronectin antibodies or fibronectin-specific small interfering RNA can inhibit the virus replication of human H1N1 influenza A viruses. Strikingly, these inhibitory effects cannot be observed in cells infected with H5N1 viruses. By using reverse genetics techniques, we observed that the receptor binding specificity, but not the origin of the hemagglutinin subtype, is responsible for this differential inhibitory effect. Changing the binding preference of hemagglutinin from α2,6-linked sialic acid to α2,3-linked sialic acid can make the virus resistant to the anti-fibronectin antibody treatment and vice versa. Our further characterizations indicate that anti-fibronectin antibody acts on the early phase of viral replication cycle, but it has no effect on the initial binding of influenza A virus to cell surface. Our subsequent investigations further show that anti-fibronectin antibody can block the postattachment entry of influenza virus. Overall, these results indicate that the sialic acid binding preference of influenza viral hemagglutinin can modulate the preferences of viral entry pathways, suggesting that there are subtle differences between the virus entries of human and avian influenza viruses.  相似文献   

11.
Influenza A virus specificity for the host is mediated by the viral surface glycoprotein hemagglutinin (HA), which binds to receptors containing glycans with terminal sialic acids. Avian viruses preferentially bind to alpha2-3-linked sialic acids on receptors of intestinal epithelial cells, whereas human viruses are specific for the alpha2-6 linkage on epithelial cells of the lungs and upper respiratory tract. To define the receptor preferences of a number of human and avian H1 and H3 viruses, including the 1918 H1N1 pandemic strains, their hemagglutinins were analyzed using a recently described glycan array. The array, which contains 200 carbohydrates and glycoproteins, not only revealed clear differentiation of receptor preferences for alpha2-3 and/or alpha2-6 sialic acid linkage, but could also detect fine differences in HA specificity, such as preferences for fucosylation, sulfation and sialylation at positions 2 (Gal) and 3 (GlcNAc, GalNAc) of the terminal trisaccharide. For the two 1918 HA variants, the South Carolina (SC) HA (with Asp190, Asp225) bound exclusively alpha2-6 receptors, while the New York (NY) variant, which differed only by one residue (Gly225), had mixed alpha2-6/alpha2-3 specificity, especially for sulfated oligosaccharides. Only one mutation of the NY variant (Asp190Glu) was sufficient to revert the HA receptor preference to that of classical avian strains. Thus, the species barrier, as defined by the receptor specificity preferences of 1918 human viruses compared to likely avian virus progenitors, can be circumvented by changes at only two positions in the HA receptor binding site. The glycan array thus provides highly detailed profiles of influenza receptor specificity that can be used to map the evolution of new human pathogenic strains, such as the H5N1 avian influenza.  相似文献   

12.
Influenza A virus glycoprotein hemagglutinin (HA) binds to host cell surface sialic acid (SA)-terminated sugars in glycoproteins to initiate viral entry. It is thought that avian influenza viruses preferentially bind to N-acetylneuraminic acid α3 (NeuAcα3) sugars, while human influenza viruses exhibit a preference for NeuAcα6-containing sugars. Thus, species-specific SA(s) is one of the determinants in viral host tropism. The SA binding pocket of the HA1 subunit has been extensively studied, and a number of residues important for receptor binding have been identified. In this study, we examined the potential roles of seven highly conserved HA surface-located amino acid residues in receptor binding and viral entry using an H5 subtype. Among them, mutant Y161A showed cell-type-dependent viral entry without obvious defects in HA protein expression or viral incorporation. This mutant also displayed dramatically different ability in agglutinating different animal erythrocytes. Oligosaccharide binding analysis showed that substituting alanine at Y161 of HA changed the SA binding preference from NeuAc to N-glycolylneuraminic acid (NeuGc). Rescued mutant Y161A viruses demonstrated a 5- to 10-fold growth defect, but they were robust in viral replication and plaque forming ability. Our results demonstrate that Y161 is a critical residue involved in recognition of different SA species. This residue may play a role in determining influenza virus host tropism.  相似文献   

13.
We reported previously that the dominant receptors of influenza A and B viruses, and human and murine respiroviruses, were sialylglycoproteins and gangliosides containing monosialo-lactosamine type I-and II-residues, such as sialic acid-α2-3(6)-Galβ1-3(4)-GlcNAcβ1-. In addition, the Siaα2-3Gal linkage was predominantly recognized by avian and horse influenza viruses, and human parainfluenza virus type 1 (hPIV-1), whereas the Siaα2-6Gal linkage was mainly recognized by human influenza viruses (Paulson JC in “The Receptors' [Conn M Ed] 2, 131–219 (1985); Suzuki Y, Prog Lipid Res 33, 429–57 (1994); Ito T, J Virol 73, 6743–51 (2000); Suzuki Y, J Virol 74, 11825–31 (2000); Suzuki T, J. Virol 75, 4604–4613 (2001); Suzuki Y, Biol. Pharm. Bull. 28, 399–408 (2005)). To clarify the distribution of influenza virus receptors on the human bronchial epithelium cell surface, we investigated a primary culture of normal human bronchial epithelial (NHBE) cells using two types of lectin (MAA and SNA), which recognize sialyl linkages (α2-3 and α2-6), using fluorescence-activated cell-sorting analysis. The results showed that both α2-3- and α2-6-linked Sias were expressed on the surface of primary human bronchial epithelial cells. The cells infected by hPIV-1 bound to MAA, confirming that cells targeted by hPIV-1 have α2-3-linked oligosaccharides. We also compared the ability of hPIV-1 and human influenza A virus to infect primary human bronchial epithelial cells pre-treated with Siaα2-3Gal-specific sialidase from Salmonella typhimurium. No difference was observed in the number of sialidase pre-treated and non-treated cells infected with human influenza A virus, which binds to Siaα2-6Gal-linked oligosaccharides. By contrast, the number of cells infected with hPIV-1 decreased significantly upon sialidase treatment. Thus, cultured NHBE cells showed both α2-3-linked Sias recognized by hPIV-1 and avian influenza virus receptors, and α2-6-linked Sias recognized by human influenza virus receptors.  相似文献   

14.
Human influenza viruses preferentially bind to sialic acid-α2,6-galactose (SAα2,6Gal) receptors, which are predominant in human upper respiratory epithelia, whereas avian influenza viruses preferentially bind to SAα2,3Gal receptors. However, variants with amino acid substitutions around the receptor-binding sites of the hemagglutinin (HA) protein can be selected after several passages of human influenza viruses from patients’ respiratory samples in the allantoic cavities of embryonated chicken eggs. In this study, we detected an egg-adapted HA S190R mutation in the pandemic H1N1 virus 2009 (pdmH1N1), and evaluated the effects of this mutation on receptor binding affinity and pathogenicity in mice. Our results revealed that residue 190 is located within the pocket structure of the receptor binding site. The single mutation to arginine at position 190 slightly increased the binding affinity of the virus to the avian receptor and decreased its binding to the long human α2,6-linked sialic acid receptor. Our study demonstrated that the S190R mutation resulted in earlier death and higher weight loss in mice compared with the wild-type virus. Higher viral titers at 1 dpi (days post infection) and diffuse damage at 4 dpi were observed in the lung tissues of mice infected with the mutant virus.  相似文献   

15.
The Galanthus nivalis agglutinin (GNA)-related lectin family exhibit significant anti-HIV and anti-HSV properties that are closely related to their carbohydrate-binding activities. However, there is still no conclusive evidence that GNA-related lectins possess anti-influenza properties. The hemagglutinin (HA) of influenza virus is a surface protein that is involved in binding host cell sialic acid during the early stages of infection. Herein, we studied the 3D-QSARs (three-dimensional quantitative structure–activity relationships) of lectin– and HA–sialic acid by molecular modeling. The affinities and stabilities of lectin– and HA–sialic acid complexes were also assessed by molecular docking and molecular dynamics simulations. Finally, anti-influenza GNA-related lectins that possess stable conformations and higher binding affinities for sialic acid than HAs of human influenza virus were screened, and a possible mechanism was proposed. Accordingly, our results indicate that some GNA-related lectins, such as Yucca filamentosa lectin and Polygonatum cyrtonema lectin, could act as drugs that prevent influenza virus infection via competitive binding. In conclusion, the GNA-related lectin family may be helpful in the design of novel candidate agents for preventing influenza A infection through the use of competitive combination against sialic acid specific viral infection.  相似文献   

16.
Influenza A neuraminidase (NA) is a target for anti-influenza drugs. The function of this enzyme is to cleave a glycosidic linkage of a host cell receptor that links sialic acid (Sia) to galactose (Gal), to allow the virus to leave an infected cell and propagate. The receptor is an oligosaccharide on the host cell surface. There are two types of oligosaccharide receptor; the first, which is found mainly on avian epithelial cell surfaces, links Sia with Gal by an α2,3 glycosidic linkage; in the second, found mainly on human epithelial cell surfaces, linkage is via an α2,6 linkage. Some researchers believe that NAs from different viruses show selectivity for each type of linkage, but there is limited information available to confirm this hypothesis. To see if the linkage type is more specific to any particular NA, a number of NA-receptor complexes of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and a pandemic strain of H1N1 (2009) were constructed using homology modeling and molecular dynamics simulation. The results show that the two types of receptor analogues bound to NAs use different mechanisms. Moreover, it was found that a residue unique to avian virus NA is responsible for the recognition of the Siaα2,3Gal receptor, and a residue unique to human virus NA is responsible for the recognition of Siaα2,6Gal. We believe that this finding could explain how NAs of different virus origins always possess some unique residues.  相似文献   

17.
The host adaptation of influenza virus is partly dependent on the sialic acid (SA) isoform bound by the viral hemagglutinin (HA). Avian influenza viruses preferentially bind the α-2,3 SA and human influenza viruses the α-2,6 isoform. Each isoform is predominantly associated with different surface epithelial cell types of the human upper airway. Using recombinant HAs and human tracheal airway epithelial cells in vitro and ex vivo, we show that many avian HA subtypes do not adhere to this canonical view of SA specificity. The propensity of avian viruses to adapt to human receptors may thus be more widespread than previously supposed.  相似文献   

18.
The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 Å resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.Influenza (flu) is an infection of the respiratory tract that affects millions of people every year. In addition to the seasonal toll, three flu pandemics in the past century caused millions of deaths worldwide in relatively short time periods (27). In April 2009, a novel strain of influenza A virus H1N1 (S-OIV) with swine origin emerged in North America and has become the first influenza pandemic in 4 decades. To date, this new H1N1 pandemic has spread globally and caused at least 7,800 deaths (World Health Organization, http://www.who.int).Hemagglutinin (HA) is the major surface envelope glycoprotein on influenza virus, and responsible for essential viral functions, such as binding to host receptors, viral entry, and membrane fusion (31). A key factor that determines the host range, restriction, and transmission of influenza virus is the specificity of HA for binding glycan receptors comprising terminal sialic acids linked to a vicinal galactose residue. HAs in avian viruses are specific for sialic acids with an α2,3-linkage, whereas in humans, the specificity is for sialic acids with an α2,6-linkage (Fig. (Fig.1a).1a). This simple linkage difference likely contributes to the inability of most avian influenza viruses to become established and transmit in the human population (26). Influenza pandemics in humans are generally associated with nonhuman viruses of novel antigenicity acquiring specificity for human receptors. HA is also the principal antigen of influenza viruses and the main target for neutralizing antibodies.Open in a separate windowFIG. 1.Crystal structure of H2 HA. (a) Chemical structures of α2,3- and α2,6-linked glycans, with the terminal sialic acid and galactose shown here. (b) Overview of the 1957 H2 trimer. One of the monomers is highlighted in green (HA1) and blue (HA2), respectively. Five potential glycosylation sites are found on each monomer (as labeled). Glycans in the density map are shown in orange. (c) Receptor binding site of H2. Residues involved in receptor binding, as suggested by the H3 structures, are shown in sticks. Aromatic residues comprising the base of the binding site are absolutely conserved in various HA subtypes. Residues from the 220 loop and position 190 are critical for the receptor specificity switch in H1, H2, and H3.Although future influenza pandemics seem inevitable, predicting the potential HA subtypes that will emerge remains a daunting task (41). To date, 16 HA subtypes have been identified and classified based on their antigenic properties (1). Theoretically, all influenza viruses new to the immune system of the human population today possess the potential to initiate a flu pandemic if their ability to enter human cells and transmit efficiently evolves. Historically, however, only viruses of three HA subtypes have acquired the ability to efficiently transmit from human to human, and these were responsible for the influenza pandemics of the last century: 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1). In recent years, viruses of other HA subtypes (H5, H7, and H9) of avian origin have infected humans in sporadic cases and occasionally with very high mortality, such as H5N1 (2, 4, 10). A key barrier to avian flu becoming a human pandemic is its inefficient human-to-human transmission, which requires a switch of receptor specificity from α2,3- to α2,6-linked receptors. Although the H2 subtype has disappeared from the human population since 1968, it has reemerged in swine in the United States (19). Preparedness for future pandemics can be best addressed by rigorous characterization of the HA subtypes that have already caused pandemics, as well as development of therapeutic reagents that broadly target multiple influenza subtypes.Here, we present three crystal structures of human H2 HA from the 1957 pandemic at resolutions of 1.60, 1.73, and 1.75 Å. These structures, which differ only by one or two residues in the receptor-binding site, represent the evolution of binding specificity for human-like receptors of avian origin during the 1957 H2N2 pandemic. Structural comparisons among the structures, along with glycan array binding studies, have shed new light on the requirements for avian H2 HA to adapt for human transmission.  相似文献   

19.

Background

Influenza viruses bind and infect respiratory epithelial cells through sialic acid on cell surface. Differential preference to sialic acid types contributes to host- and tissue-tropism of avian and seasonal influenza viruses. Although the highly pathogenic avian influenza virus H5N1 can infect and cause severe diseases in humans, it is not efficient in infecting human upper respiratory tract. This is because of the scarcity of its receptor, α2,3-linked sialic acid, in human upper airway. Expression of sialic acid can be influenced by various factors including inflammatory process. Allergic rhinitis and nasal polyp are common inflammatory conditions of nasal mucosa and may affect expression of the sialic acid and susceptibility to influenza infection.

Methodology/Principal Finding

To test this hypothesis, we detected α2,3- and α2,6-linked sialic acid in human nasal polyp and normal nasal mucosal tissues by lectin staining and infected explants of those tissues with avian influenza viruses H5N1 and seasonal influenza viruses. We show here that mucosal surface of nasal polyp expressed higher level of α2,3- and α2,6-linked sialic acid than normal nasal mucosa. Accordingly, both H5N1 avian influenza viruses and seasonal influenza viruses replicated more efficiently in nasal polyp tissues explants.

Conclusions/Significance

Our data suggest a role of nasal inflammatory conditions in susceptibility to influenza infection, especially by avian influenza viruses, which is generally inefficient in infecting human upper airway. The increased receptor expression may contribute to increased susceptibility in some individuals. This may contribute to the gradual adaptation of the virus to human population.  相似文献   

20.
It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号