首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on ectoparasitic chigger mites found on small mammals in Yunnan Province, southwest China. Data were accumulated from 19 investigation sites (counties) between 2001 and 2009. A total of 10 222 small mammal hosts were captured and identified; these represented 62 species, 34 genera and 11 families in five orders. From the body surfaces of these 10 222 hosts, a total of 92 990 chigger mites were collected and identified microscopically. These represented 224 species, 22 genera and three subfamilies in the family Trombiculidae (Trombidiformes). Small mammals were commonly found to be infested by chigger mites and most host species harboured several species of mite. The species diversity of chigger mites in Yunnan was much higher than diversities reported previously in other provinces of China and in other countries. A single species of rodent, Eothenomys miletus (Rodentia: Cricetidae), carried 111 species of chigger mite, thus demonstrating the highest species diversity and heaviest mite infestation of all recorded hosts. This diversity is exceptional compared with that of other ectoparasites. Of the total 224 mite species, 21 species accounted for 82.2% of all mites counted. Two species acting as major vectors for scrub typhus (tsutsugamushi disease), Leptotrombidium scutellare and Leptotrombidium deliense, were identified as the dominant mite species in this sample. In addition to these two major vectors, 12 potential or suspected vector species were found. Most species of chigger mite had a wide range of hosts and low host specificity. For example, L. scutellare parasitized 30 species of host. The low host specificity of chigger mites may increase their probability of encountering humans, as well as their transmission of scrub typhus among different hosts. Hierarchical clustering analysis showed that similarities between different chigger mite communities on the 18 main species of small mammal host did not accord with the taxonomic affinity of the hosts. This suggests that the distribution of chigger mites may be strongly influenced by the environment in which hosts live.  相似文献   

2.

We studied the distribution of chigger mite species over mammal hosts, attachment sites on the host body, habitats, and seasons in Iran. The study was based on 2155 specimens of 36 chigger species collected from 10 species of Muridae, Cricetidae, and Soricidae across six provinces of northern Iran. A high level of mixed infestation by chiggers was recorded—76% of hosts parasitized by chiggers were infested by more than one (2–8) species. Statistically significant differences in the preference for anterior and posterior parts of the host body were found. Three species—Neotrombicula lubrica, N. delijani, and Cheladonta firdousii—preferred the posterior part of the host body; 12 species were characterized by the occurrence in the anterior part and differed from one another by the frequency of presence in the posterior part. One species, Hirsutiella alpina, was found only in the anterior part of the host body (inside the ears of rodents). The most diverse chigger fauna was on the fringe of Golestan National Park (species richness?=?21, Shannon–Wiener index?=?2.823). The chigger fauna of the high-mountain localities on the Alborz Range was the least diverse (species richness?=?16, Shannon–Wiener index?=?2.439). The seasonal aspect of activity was evident for Neotrombicula elegans, which exposed the autumn–winter period of the occurrence on hosts, and N. vernalis, with the winter-spring peak of abundance.

  相似文献   

3.
During October-December 1987, chigger mites infested on the striped field mice (Apodemus agrarius coreae) collected at Pochun-gun, Gyeonggi Province and Chinhae city, Kyongnam Province were identified. 1. Of 171 back-striped mice collected, chigger mites were found from 58 mice, showing 33.9% of infestation rate. 2. Total 865 chigger mites collected were classified into seven species; Leptotrombidium pallidum (4.3%), L. palpale(23.0%), L. orientalis(20.2), L. zetum(19.0%). Neotrombicula tamiyai(32.9), N. japonica(0.2%) and Euschongastia koreaensis(0.3%). Though the most dominant species in number was N. tamiyai(32.9% of the total), this species was collected at very limited locality and for a short period. Therefore, most common species in Korea seems to be L. palpale which was found at all localities throughout the whole survey period. L. pallidum which is known as the vector species of tsutsugamushi disease in Korea was collected in a very low number(4.3% of the total chiggers collected). 3. The number of chigger mites infested on a host animal showed great variations from one chigger up to 207 chiggers. The present study has shown that there may be other Leptotrombidium species mite(s) for the vector and host of tsutsugamushi disease in Korea.  相似文献   

4.
Based on the field investigations in 91 investigation sites (counties) in southwest China between 2001 and 2019, the present paper reported the chigger mites on A. agrarius mice in southwest China for the first time by using a series of statistical methods. From 715 striped field mice captured in 28 of 91 investigated sites, only 255 chiggers were collected, and they were identified as 14 species, 6 genera in 3 subfamilies under 2 families. Of 715 A. agrarius mice, only 24 of them were infested with chigger mites with low overall prevalence (PM=3.4%), overall mean abundance (MA=0.36 mites/host) and overall mean intensity (MI=10.63 mites/host). The species diversity and infestation of chiggers on A. agrarius were much lower than those previously reported on some other rodents in southwest China. On a certain species of rodent, A. agrarius mouse in southwest China seems to have a very low susceptibility to chigger infestations than in other geographical regions. Of 14 chigger species, there were 3 dominant species, Leptotrombidium sialkotense, L. rupestre and Schoengastiella novoconfuciana, which were of aggregated distribution among different individuals of A. agrarius hosts. L. sialkotense, one of 6 main vectors of scrub typhus in China, was the first dominant on A. agrarius. The species similarity of chigger mites on male and female hosts was low with CSS=0.25, and this reflects the sex-bias of different genders of A. agrarius mice in harboring different chigger species.  相似文献   

5.
Owing to climate change, the global resurgence of vector‐borne infectious diseases has emerged as a critical public health issue. Orientia tsutsugamushi is the etiological agent of tsutsugamushi disease (scrub typhus) a mite‐borne acute febrile disease occurring in the Asia‐Pacific region. We investigated the prevalence of tsutsugamushi disease transmitted by chigger mite vectors living on rodents. Using sticky‐type chigger traps for three months during 2016–2018, 1,057 chigger mites were collected (chigger mite index, 1.31) from four locations in the Hwaseong‐si area of Gyeonggi‐do, Republic of Korea. Five species distributed among three genera were identified. In addition, 94 rodents were captured (collection rate: 7.83%) using Sherman live traps over the course of three months (April, October, and November) during 2016–2017. Three rodent species were captured and identified and the striped field mouse (Apodemus agrarius) was the dominant rodent host species in the surveyed area. A total of 10,469 ectoparasitic chigger mites were recovered from the 94 rodents, from which 13 species distributed among four genera were identified. Of the 5,250 chigger mites examined, Leptotrombidium pallidum was most abundant (n = 2,558), followed by L. orientale, L. scutellare, L. zetum, Euschoengastia koreaensis, L. subintermedium, and Neotrombicula tamiyai. Of the examined chigger mites, no groups recovered from rodent hosts tested positive for O. tsutsugamushi. This study provides fundamental regional information on vector‐borne disease data collection in the Hwaseong‐si area, Gyeonggi‐do, and will further contribute to formulating disease control and prevention strategies.  相似文献   

6.
Upon re-examination of preserved larval chiggers collected from spadefoot toads (Spea bombifrons and Spea multiplicata) in the Southern High Plains of Texas, USA, and identified previously as Hannemania sp., we found them to be Eutrombicula alfreddugesi. A review of previous reports of Eutrombicula spp. chiggers on amphibian hosts provides context for current findings. All members of the genus Hannemania are specialized larval parasites of amphibians, whereas larval E. alfreddugesi are generalist parasites of a wide variety of terrestrial vertebrate hosts that infrequently includes amphibians. Spadefoot toads are previously undocumented hosts for E. alfreddugesi, and observed infestations were unusually prevalent and intense for this chigger on an amphibian host.  相似文献   

7.
2000~2004年对云南省恙螨进行调查,发现云南省内恙螨192种,主要分布于中西部及中南部的热带及亚热带气候区,垂直高度多在1 000 m以下或1 500~2 500m范围.古北界种类有114种,占59%,东洋界种类较少为6%,35%的种类为跨界分布.中华纤恙螨leptotrombidium sinicum和小板纤恙螨L.scutellare为优势螨种.结合其他资料发现,该省广布种类10种,特有种5种,广宿主种及窄宿主种类均较多.少数螨种仅发现于3000 m以上的高海拔温带气候区或500m以下的低海拔热带气候区.恙螨分布与地域、海拔及气候因素有关.  相似文献   

8.
《Trends in parasitology》2023,39(8):696-707
‘Chiggers’ (trombiculid mite larvae) are best known as vectors of rickettsial pathogens, Orientia spp., which cause a zoonosis, scrub typhus. However, several other pathogens (e.g., Hantaan orthohantavirus, Dabie bandavirus, Anaplasma spp., Bartonella spp., Borrelia spp., and Rickettsia spp.) and bacterial symbionts (e.g., Cardinium, Rickettsiella, and Wolbachia) are being reported from chiggers with increasing frequency. Here, we explore the surprisingly diverse chigger microbiota and potential interactions within this microcosm. Key conclusions include a possible role for chiggers as vectors of viral diseases; the dominance in some chigger populations of unidentified symbionts in several bacterial families; and increasing evidence for vertical transmission of potential pathogens and symbiotic bacteria in chiggers, suggesting intimate interactions and not simply incidental acquisition of bacteria from the environment or host.  相似文献   

9.
This paper is to illustrate the infestation and related ecological characteristics of chigger mites on the Asian house rat (Rattus tanezumi). A total of 17,221 chigger mites were collected from 2,761 R. tanezumi rats, and then identified as 131 species and 19 genera in 2 families. Leptotrombidium deliense, the most powerful vector of scrub typhus in China, was the first major dominant species on R. tanezumi. All the dominant mite species were of an aggregated distribution among different individuals of R. tanezumi. The species composition and infestations of chiggers on R. tanezumi varied along different geographical regions, habitats and altitudes. The species-abundance distribution of the chigger mite community was successfully fitted and the theoretical curve equation was Ŝ (R)=37e−(0.28R. The total chigger species on R. tanezumi were estimated to be 199 species or 234 species, and this further suggested that R. tanezumi has a great potential to harbor abundant species of chigger mites. The results of the species-plot relationship indicated that the chigger mite community on R. tanezumi in Yunnan was an uneven community with very high heterogeneity. Wide geographical regions with large host samples are recommended in the investigations of chigger mites.  相似文献   

10.
Serosurveillance for zoonotic diseases in small mammals and detection of chiggers, the vector of Orientia tsutsugamushi, were conducted from September 2014 to August 2015 in Gwangju Metropolitan Area. Apodemus agrarius was the most commonly collected small mammals (158; 91.8%), followed by Myodes regulus (8; 4.6%), and Crocidura lasiura (6; 3.5%). The highest seroprevalence of small mammals for O. tsutsugamushi (41; 26.3%) was followed by hantaviruses (24; 15.4%), Rickettsia spp. (22; 14.1%), and Leptospira (2; 1.3%). A total of 3,194 chiggers were collected from small mammals, and 1,236 of 3,194 chiggers were identified with 7 species of 3 genera: Leptotrombidium scutellare was the most commonly collected species (585; 47.3%), followed by L. orientale (422; 34.1%), Euchoengastia koreaensis (99; 8.0%), L. palpale (58; 4.7%), L. pallidum (36; 2.9%), Neotrombicula gardellai (28; 2.3%), and L. zetum (8; 0.6%). L. scutellare was the predominant species. Three of 1,236 chigger mites were positive for O. tsutsugamushi by PCR. As a result of phylogenetic analysis, the O. tsutsugamushi strain of chigger mites had sequence homology of 90.1-98.2% with Boryong. This study provides baseline data on the distribution of zoonotic diseases and potential vectors for the development of prevention strategies of vector borne diseases in Gwangju metropolitan area.  相似文献   

11.
Gray squirrels, Sciurus carolinensis, were livetrapped in 2 different habitat types, woodland (67 squirrels) and parkland (53 squirrels), in southeastern Georgia. Ectoparasites were recovered from anesthetized squirrels and compared between hosts from the 2 habitats. Because of the absence of low vegetation in parkland habitats, it was hypothesized that the ectoparasite fauna, especially ticks and chiggers, would be more diverse on woodland squirrels. The results were generally in agreement with this hypothesis. Seventeen species of ectoparasites were recovered from woodland squirrels, compared with 6 species from parkland squirrels. Five species of ticks and 3 species of chiggers parasitized the woodland squirrels compared with no ticks or chiggers on the parkland squirrels. Significantly higher infestation prevalences were recorded on woodland compared with parkland squirrels for the flea Orchopeas howardi, the tick Amblyomma americanum, and the mesostigmatid mite Androlaelaps fahrenholzi. The mean intensity for O. howardi also was significantly higher on woodland than on parkland squirrels. Because a new strain of Bartonella sp. was isolated recently from S. carolinensis in Georgia, selected ectoparasites from this study were screened for bartonellae by polymerase chain reaction (PCR). Some of the fleas and lice, but none of the mites tested, were PCR positive, suggesting that fleas, or lice, or both, might be vectors of bartonellae between squirrels. Six distinct strains of Bartonella sp. were detected, 2 in fleas and 4 in lice.  相似文献   

12.
We studied the parasitism by the chigger mite Eutrombicula alfreddugesi on four sympatric lizard species of the genus Tropidurus in Morro do Chapéu, Bahia state, Brazil: T. hispidus, T. cocorobensis, T. semitaeniatus and T. erythrocephalus. For each species, we investigated the patterns of infestation and analyzed to which extent they varied among the hosts. We calculated the spatial niche breadth of the chigger mite on the body of each host species and the distribution of mites along the hosts' bodies for each Tropidurus species. All four species of Tropidurus at Morro do Chapéu were parasited by the chigger mite, with high (97-100%) prevalences. Host body size significantly explained the intensity of mite infestation for all species, except T. erythrocephalus. The body regions with highest intensity of infestation in the four lizard species were the mite pockets. The spacial niche width of the chigger varied consistently among the four lizards species studied being highest for T. erytrocephalus and lowest for T. cocorobensis. We conclude that the distribution and intensity with which lizards of the genus Tropidurus are infested by Eutrombicula alfreddugesi larvae results from the interaction between aspects of host morphology (such as body size and the occurrence and distribution of mite pockets) and ecology (especially microhabitat use).  相似文献   

13.
The pathogen and parasite community that inhabits every free-living organism can control host vital rates including lifespan and reproductive output. To date, however, there have been few experiments examining pathogen community assembly replicated at large-enough spatial scales to inform our understanding of pathogen dynamics in natural systems. Pathogen community assembly may be driven by neutral stochastic colonization and extinction events or by niche differentiation that constrains pathogen distributions to particular environmental conditions, hosts, or vectors.Here, we present results from a regionally-replicated experiment investigating the community of barley and cereal yellow dwarf viruses (B/CYDV''s) in over 5000 experimentally planted individuals of six grass species along a 700 km latitudinal gradient along the Pacific coast of North America (USA) in response to experimentally manipulated nitrogen and phosphorus supplies. The composition of the virus community varied predictably among hosts and across nutrient-addition treatments, indicating niche differentiation among virus species. There were some concordant responses among the viral species. For example, the prevalence of most viral species increased consistently with perennial grass cover, leading to a 60% increase in the richness of the viral community within individual hosts (i.e., coinfection) in perennial-dominated plots. Furthermore, infection rates of the six host species in the field were highly correlated with vector preferences assessed in laboratory trials. Our results reveal the importance of niche differentiation in structuring virus assemblages. Virus species distributions reflected a combination of local host community composition, host species-specific vector preferences, and virus responses to host nutrition. In addition, our results suggest that heterogeneity among host species in their capacity to attract vectors or support pathogens between growing seasons can lead to positive covariation among virus species.  相似文献   

14.
The spread of vector‐borne pathogens depends on a complex set of interactions among pathogen, vector, and host. In single‐host systems, pathogens can induce changes in vector preferences for infected vs. healthy hosts. Yet it is unclear if pathogens also induce changes in vector preference among host species, and how changes in vector behaviour alter the ecological dynamics of disease spread. Here, we couple multi‐host preference experiments with a novel model of vector preference general to both single and multi‐host communities. We show that viruliferous aphids exhibit strong preferences for healthy and long‐lived hosts. Coupling experimental results with modelling to account for preference leads to a strong decrease in overall pathogen spread through multi‐host communities due to non‐random sorting of viruliferous vectors between preferred and non‐preferred host species. Our results demonstrate the importance of the interplay between vector behaviour and host diversity as a key mechanism in the spread of vectored‐diseases.  相似文献   

15.
Ectoparasites such as ixodid ticks that remain attached to hosts for several days while feeding on blood are able to overcome the inflammatory and immune responses of some hosts and not others. The immature stages of the deer tick Ixodes dammini are found more frequently on the white-footed mouse, Peromyscus leucopus, than on other rodents. We propose that P. leucopus is more tolerant to I. dammini than is a less common host, the meadow vole, Microtus pennsylvanicus. To test this hypothesis, the distribution patterns and engorgement indices were determined for larval and nymphal I. dammini collected from wild-caught P. leucopus and M. pennsylvanicus. There were more immature ticks, which were more fully engorged, on P. leucopus than on M. pennsylvanicus. There were more and better engorged ticks on male than on female hosts. Laboratory studies on the number and weights of larval I. dammini collected off naive and previously exposed P. leucopus and M. pennsylvanicus support the results of the field study. Fewer larval ticks were recovered from previously exposed M. pennsylvanicus than P. leucopus, and the ticks weighed less. Larval and nymphal ticks aggregated among hosts in the study grid, and higher densities per male P. leucopus were correlated with higher engorgement indices, suggesting that immature I. dammini feed better at higher densities. The feeding success of I. dammini on its preferred host species might be due to its adaptation to the immune and inflammatory reactions of the host.  相似文献   

16.
Lalić J  Cuevas JM  Elena SF 《PLoS genetics》2011,7(11):e1002378
Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host.  相似文献   

17.
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.  相似文献   

18.
The milkweed-oleander aphid, Aphis nerii (Boyer de Fonscolombe) (Homoptera: Aphididae), feeds on different milkweed species in northern California than in Puerto Rico. The hosts vary, primarily between regions, for both identity and quantity of cardenolides that the aphid sequesters for its own defense. In tests for hostassociated fitness trade-offs only one case was found in which host plant and fitness corresponded, but the effect was not significant. However, power to detect fitness trade-offs was limited and the possibility of considerable differences in fitness on a particular host for aphids from different hosts cannot be excluded. On Californian host species, among which migration is common, generalized host use could result from selection for general-purpose genotypes. However, this explanation cannot apply to generalized host use of Californian and Puerto Rican milkweeds because the regions are isolated by distance. A cardenolide sequestration mechanism that is free of substantial energy costs could provide the basis for fitness homeostasis on variable host plants that makes trade-offs unlikely even on hosts from different regions.  相似文献   

19.
Many malaria vector mosquitoes in Africa have an extreme preference for feeding on humans. This specialization allows them to sustain much higher levels of transmission than elsewhere, but there is little understanding of the evolutionary forces that drive this behaviour. In Tanzania, we used a semi-field system to test whether the well-documented preferences of the vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) for cattle and humans, respectively, are predicted by the fitness they obtain from host-seeking on these species relative to other available hosts. Mosquito fitness was contrasted, when humans were fully exposed and when they were protected by a typical bednet. The fitness of both vectors varied between host species. The predicted relationship between host preference and fitness was confirmed in An. arabiensis, but not in An. gambiae s.s., whose fitness was similar on humans and other mammals. Use of typical, imperfect bednets generated only minor reductions in An. gambiae s.s. feeding success and fitness on humans, but was predicted to generate a significant reduction in the lifetime reproductive success of An. arabiensis on humans relative to cows. This supports the hypothesis that such human-protective measures could additionally benefit malaria control by increasing selection for zoophily in vectors.  相似文献   

20.
Control of emerging infectious diseases often hinges on identifying a pathogen reservoir, the source of disease transmission. The potential to function as a pathogen reservoir can be influenced by host lifespan, geographic provenance and phylogeny. Yet, no study has identified factors that causally determine the reservoir potential of diverse host species. We propose the host physiological phenotype hypothesis, which predicts that hosts with short‐lived, poorly defended, nutrient rich and high metabolism tissue have greater values for three epidemiological parameters that determine reservoir potential: host susceptibility to infection, competence to infect vectors and ability to support vector populations. We experimentally tested these predictions using a generalist vectored virus and six wild grass species. Host physiological phenotype explained why hosts differed in all three epidemiological parameters while host lifespan, provenance and phylogeny could not explain host competence. Thus, a single, general axis describing variation in host physiological phenotype may explain reservoir potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号