首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peroxisomes from Tetrahymena pyriformis contained catalase, d-amino acid oxidase, cyanide-insensitive fatty acyl-CoA oxidizing system, carnitine acetyltransferase, isocitrate lyase, leucine:glyoxylate aminotransferase and phenylalanine:glyoxylate aminotransferase. These activities, except carnitine acetyltransferase, were found at the highest levels in the light mitochondrial fraction, whereas the highest activity of carnitine acetyltransferase was found in the micotchondrial fraction. Sucrose density gradient centrifugation showed that the density of peroxisomes was approx. 1.228 g/ml and that of mitochondria was approx. 1.213 g/ml. When the light mitochondrial fraction was treated with deoxycholate or by freeze-thawing, most of the activities of catalase and isocitrate lyase were solubilized, whereas about half of the original activity of aminotransferase remained in the pellet fraction. Addition of fatty acid and clofibrate increased the activities of the cyanide-insensitive fatty acyl-CoA oxidizing system and isocitrate lyase in the peroxisomes. The activity of catalase was slightly increased by glucose and clofibrate; leucine:glyoxylate aminotransferase activity was significantly increased by clofibrate treatment.  相似文献   

2.
Male Wistar rats were given a diet containing 0.05% (w/w) LK-903 (alpha-methyl-p-myristyroxycinnamic acid 1-monoglyceride) for 2 weeks. The activities of four hepatic peroxisomal enzymes involved in the fatty acyl-CoA beta-oxidizing system were determined. The activities of fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase were all increased about three times by administration of LK-903. The intraparticulate localizations of the four enzymes were then investigated by treatment of the purified peroxisomes with Triton X-100, by sonication, and by sucrose-density-gradient centrifugation after Triton X-100 treatment. The results suggest that thiolase is localized in the matrix of peroxisomes, that crotonase and beta-hydroxybutyryl-CoA dehydrogenase are located in the core, and that all or at least part of fatty acyl-CoA oxidase is associated with the core, though its association is weak.  相似文献   

3.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

4.
Rat liver peroxisomes catalyze the beta oxidation of fatty acids   总被引:36,自引:0,他引:36  
Peroxisomes were purified by differential and equilibrium density centrifugation from the livers of rats treated with clofibrate to enhance their peroxisomal system of fatty acid oxidation. These purified peroxisomes were tested for the presence of crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase using spectroscopic techniques that utilize the characteristic absorption bands of the appropriate 4-carbon acyl-CoA substrates. All three enzymes were found. Analysis of the fractions from equilibrium density centrifugation revealed major peaks of these enzyme activities in peroxisomes and excluded contamination by mitochondria as an explanation of the results. In the presence of excess CoA the purified peroxisomes oxidized palmitoyl-CoA to acetyl-CoA, and reduced NAD, with a 1:5:5 stoichiometry. The peroxisomes were inactive with butyryl-CoA and less active with octanoyl-CoA than with lauroyl-CoA or palmitoyl-CoA; they appear specialized for the beta oxidation of long chain fatty acids.  相似文献   

5.
The activities of peroxisomal and mitochondrial beta-oxidation and carnitine acyltransferases changed during the process of development from embryo to adult chicken, and the highest activities of peroxisomal beta-oxidation, palmitoyl-CoA oxidase, and carnitine acetyltransferase were found at the hatching stage of the embryo. The profiles of these alterations were in agreement with those of the contents of triglycerides and free fatty acids in the liver. The highest activities of mitochondrial beta-oxidation and palmitoyl-CoA dehydrogenase were observed at the earlier stages of the embryo; then the activities decreased gradually from embryo to adult chicken. The ratio of activities of carnitine acetyltransferase in peroxisomes and mitochondria (peroxisomes/mitochondria) increased from 0.54 to 0.82 during the development from embryo to adult chicken. The ratio of activities of carnitine palmitoyltransferase decreased from 0.82 to 0.25 during the development. The affinity of fatty acyl-CoA dehydrogenase toward the medium-chain acyl-CoAs (C6 and C8) was high in the embryo and decreased with development, whereas the substrate specificity of fatty acyl-CoA oxidase did not change. The substrate specificity of mitochondrial carnitine acyltransferases did not change with development. The affinity of peroxisomal carnitine acyltransferases toward the long-chain acyl-CoAs (C10 to C16) was high in the embryo, but low in adult chicken.  相似文献   

6.
Male albino rats (Sprague Dawley) were fed for 2-6 weeks on a diet containing 0.75% clofibrate. Liver cell fractions obtained from these animals were assayed for peroxisomal enzymes. In the cell homogenate the catalase activity was doubled, whereas the activity of urate oxidase was found to be only slightly depressed. The activity of carnitine acetyltransferase increased several times. In liver peroxisomes purified by isopycnic gradient centrifugation the specific activity of urate oxidase decreased appreciably showing that peroxisomes formed under the proliferative influence of clofibrate are not only modified with respect to their morphological characteristics but also to their enzymic equipment. This is also obvious from the changes in peroxisomal carnitine acetyltransferase activity which was enhanced by clofibrate to more than the fivefold amount. In purified mitochondria this enzyme was even more active: clofibrate advances both, the peroxisomal and the mitochondrial moiety of carnitine acetyltransferase. Morphological and cytochemical studies showed an increase in the number of microbodies and as compared to the controls microbodies were lying in groups more frequently. Small particles located closely adjacent to "normal" sized peroxisomes were found particularly after short feeding periods. While the number of coreless microbodies increased studies gave no clear evidence for an increase in marked shape irregularities of the peroxisomes.  相似文献   

7.
Catalase activity in the heart of male rabbits was 21% of that found in the liver; clofibrate feeding (0.3% w/w for 10 days) resulted in an 80% increase in both cardiac and hepatic catalase activities. Fatty acyl-CoA oxidase activity in control heart was 11% of that found in control liver; this peroxisomal activity did not increase subsequent to clofibrate feeding. Only acyl-CoA hydrolase activity in the cardiac supernatant was elevated by clofibrate feeding. Acylcarnitine hydrolase activity was increased significantly in the homogenate, extract and supernatant of both heart and liver from the clofibrate-fed rabbit. Clofibrate feeding increased CoASH and carnitine tissue levels in heart and liver.  相似文献   

8.
The existence of a relationship between clofibrate-induced peroxisome proliferation and oxidative stress mediated by activated oxygen species was studied in intact peroxisomes purified from Pisum sativum L. plants. Incubation of leaves with 1 mM clofibrate produced a remarkable increase in the peroxisomal activity of acyl-CoA oxidase and, to a lesser extent, of xanthine oxidase, whereas there was a nearly complete loss of catalase activity and a decrease in Mn-superoxide dismutase. Ultrastructural studies of intact leaves showed that clofibrate induced a five- and twofold proliferation of the peroxisomal and mitochondrial populations, respectively, in comparison with those in control leaves. Prolonged incubation with clofibrate produced considerable alterations in the ultrastructure of cells. In peroxisomal membranes, the NADH-induced generation of O2- radicals, as well as the lipid peroxidation of membranes, increased as a result of treatment of plants with clofibrate. In intact peroxisomes treated with this hypolipidemic drug, the H2O2 concentration was higher than in peroxisomes from control plants. These results demonstrate that clofibrate stimulates the production of activated oxygen species (O2- and H2O2) inside peroxisomes, as well as the lipid peroxidation of peroxisomal membranes. This effect is concomitant with a decrease of catalase and Mn-SOD activities, the main peroxisomal enzymatic defenses against H2O2 and O2-, and indicates that in the toxicity of clofibrate, at the level of peroxisomes, an oxidative stress mechanism mediated by activated oxygen species is involved.  相似文献   

9.
Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation   总被引:1,自引:0,他引:1  
Catalase activity was inhibited by aminotriazole administration to rats in order to evaluate the influence of catalase on the peroxisomal fatty acyl-CoA beta-oxidation system. 2 h after the administration of aminotriazole, peroxisomes were prepared from rat liver, and the activities of catalase, the beta-oxidation system and individual enzymes of beta-oxidation (fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase) were determined. Catalase activity was decreased to about 2% of the control. Among the individual enzymes of the beta-oxidation system, thiolase activity was decreased to 67%, but the activities of fatty acyl-CoA oxidase, crotonase and beta-hydroxybutyryl-CoA dehydrogenase were almost unchanged. The activity of the peroxisomal beta-oxidation system was assayed by measuring palmitoyl-CoA-dependent NADH formation, and the activity of the purified peroxisome preparation was found to be almost unaffected by the administration of aminotriazole. The activity of the system in the aminotriazole-treated preparation was, however, significantly decreased to 55% by addition of 0.1 mM H2O2 to the incubation mixture. Hydrogen peroxide (0.1 mM) reduced the thiolase activity of the aminotriazole-treated peroxisomes to approx. 40%, but did not affect the other activities of the system. Thiolase activity of the control preparation was decreased to 70% by addition of hydrogen peroxide (0.1 mM). The half-life of 0.1 mM H2O2 added to the thiolase assay mixture was 2.8 min in the case of aminotriazole-treated peroxisomes, and 4 s in control peroxisomes. The ultraviolet spectrum of acetoacetyl-CoA (substrate of thiolase) was clearly changed by addition of 0.1 mM H2O2 to the thiolase assay mixture without the enzyme preparation; the absorption bands at around 233 nm (possibly due to the thioester bond of acetoacetyl-CoA) and at around 303 nm (due to formation of the enolate ion) were both significantly decreased. These results suggest that H2O2 accumulated in peroxisomes after aminotriazole treatment may modify both thiolase and its substrate, and consequently suppress the fatty acyl-CoA beta-oxidation. Therefore, catalase may protect thiolase and its substrate, 3-ketoacyl-CoA, by removing H2O2, which is abundantly produced during peroxisomal enzyme reactions.  相似文献   

10.
In this paper we describe the identification of pristanoyl-CoA oxidase activity in rat liver peroxisomes. This activity was not stimulated by clofibrate feeding. Furthermore, the activity was found in multiple tissues. These results show that pristanoyl-CoA oxidase is different from any of the known oxidases which include a clofibrate-inducible acyl-CoA oxidase and the recently identified cholestanoyl-CoA oxidase. Gelfiltration and chromatofocusing experiments provide conclusive evidence that we are dealing with a novel acyl-CoA oxidase with a unique function in peroxisomal beta-oxidation.  相似文献   

11.
Myocardial peroxisomes were investigated in normal and diabetic rats. Catalase and acyl-CoA oxidase activities were increased in the diabetic rat heart and immunoblot analysis showed that both enzyme proteins were markedly enhanced in diabetic heart homogenates. After immunoenzyme staining, catalase and acyl-CoA oxidase were localized in fine granules in the myocardium, which were increased in number in diabetic rats. The numerical density of the granules stained for catalase was increased 1.7 times and that for acyl-CoA oxidase 1.8 times, compared with controls. Protein A-gold labeling for catalase and acyl-CoA oxidase was present in myocardial peroxisomes. The labeling density for both enzymes was increased in diabetic rats by 1.6 times for catalase and 1.5 times for acyl-CoA oxidase, compared with controls. The results indicate that myocardial peroxisomes are increased in the diabetic rat and that this proliferation is accompanied by an increase in catalase and acyl-CoA oxidase activities.  相似文献   

12.
Treatment with peroxisome proliferators induces increased numbers and alterations in the shape of peroxisomes in liver. It ultimately leads to hepatocellular carcinomas induced by the persistent production of high amounts of H2O2 as a result of a dramatical increase in acyl-CoA oxidase activity. The effects of peroxisome proliferators on other peroxisomal oxidase activities are less well documented. In the present study, the distribution patterns of the activity of SdD-amino acid oxidase, SlD-alpha-hydroxy acid oxidase, polyamine oxidase, urate oxidase and catalase activities were investigated in unfixed cryostat sections of liver, kidney and duodenum of rats treated with either clofibrate or bis(2-ethylhexyl)phthalate. The activities of xanthine oxidoreductase, which produces urate, a potent anti-oxidant, and xanthine oxidase, which produces oxygen radicals, were studied as well. The liver was the only organ that was affected by treatment. The number of peroxisomes increased considerably. SdD-Amino acid oxidase and polyamine oxidase activities were completely abolished by the treatment, whereas SlD-alpha-hydroxy acid oxidase activity decreased and urate oxidase activity increased periportally and decreased pericentrally. Total catalase activity increased because of the larger numbers of peroxisomes, but it decreased per individual peroxisome. Xanthine oxidoreductase activity decreased, whereas the percentage of xanthine oxidase remained constant. We conclude that oxidases in rat liver are affected differentially, indicating that the expression of activity of each oxidase is regulated individually. © 1998 Chapman & Hall  相似文献   

13.
Kidney post-nuclear supernatants from genetically lean and obese mice were subjected to subcellular fractionation by dual centrifugation through sucrose gradients in B XIV zonal rotors. Considerable purification of peroxisomes was achieved which allowed the demonstration of acyl-CoA beta-oxidation enzymes and carnitine acyltransferases in these organelles. Comparison of kidney peroxisome-enriched fractions from obese and lean mice indicated a likely relative depression in beta-oxidation enzymes in the obese animal. Measurement of catalase, acyl-CoA oxidase and carnitine octanoyltransferase in whole homogenate of liver and kidney of obese and lean mice revealed significantly reduced levels (to approximately 2/3) of these peroxisomal enzymes in the kidney of ob/ob mice. In contrast the specific activity of catalase and acyl-CoA oxidase was significantly raised in the liver of obese mice.  相似文献   

14.
1. The activities of acyl-CoA hydrolase, catalase, urate oxidase and peroxisomal palmitoyl-CoA oxidation as well as the protein content and the level of CoASH and long-chain acyl-CoA were measured in subcellular fractions of liver from rats fed diets containing phenobarbital (0.1% w/w) or clofibrate (0.3% w/w). 2. Whereas phenobarbital administration resulted in increased microsomal protein, the clofibrate-induced increase was almost entirely attributed to the mitochondrial fraction with minor contribution from the light mitochondrial fraction. 3. The specific activity of palmitoyl-CoA hydrolase in the microsomal fraction was only slightly affected while the mitochondrial enzyme was increased to a marked extent (3-4-fold) by clofibrate. 4. Phenobarbital administration mainly enhanced the microsomal palmitoyl-CoA hydrolase. 5. The increased long-chain acyl-CoA and CoASH level observed after clofibrate treatment was mainly associated with the mitochondrial, light mitochondrial and cytosolic fractions, while the slight increase in the levels of these compounds found after phenobarbital feeding was largely of microsomal origin. 6. The findings suggest that there is an intraperoxisomal CoASH and long-chain acyl-CoA pool. 7. The specific activity of palmitoyl-CoA hydrolase, catalase and peroxisomal palmitoyl-CoA oxidation was increased in the lipid-rich floating layer of the cytosol-fraction. 8. The changes distribution of the peroxisomal marker enzymes and microsomal palmitoyl-CoA hydrolase after treatment with hypolipidemic drugs may be related to the origin of peroxisomes.  相似文献   

15.
Mammalian liver peroxisomes are capable of beta-oxidizing a variety of substrates including very long chain fatty acids and the side chains of the bile acid intermediates di- and trihydroxycoprostanic acid. The first enzyme of peroxisomal beta-oxidation is acyl-CoA oxidase. It remains unknown whether peroxisomes possess one or several acyl-CoA oxidases. Peroxisomal oxidases from rat liver were partially purified by (NH4)2SO4 precipitation and heat treatment, and the preparation was subjected to chromatofocusing, chromatography on hydroxylapatite and dye affinity matrices, and gel filtration. The column eluates were assayed for palmitoyl-CoA and trihydroxycoprostanoyl-CoA oxidase activities and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results revealed the presence of three acyl-CoA oxidases: 1) a fatty acyl-CoA oxidase with a pI of 8.3 and an apparent molecular mass of 145 kDa. The enzyme consisted mainly of 52- and 22.5-kDa subunits and could be induced by clofibrate treatment; 2) a noninducible fatty acyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 427 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 71 kDa; and 3) a noninducile trihydroxycoprostanoyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 139 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 69 kDa. Our findings are probably related to the recent discovery of two species of acyl-CoA oxidase mRNA in rat liver (Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furata, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8131-8137) and they probably also explain why in human peroxisomal beta-oxidation defects an accumulation of very long chain fatty acids is not always accompanied by an excretion of bile acid intermediates and vice versa.  相似文献   

16.
Hepatic peroxisomes and mitochondria from 20-day-old chick embryo were separated by sucrose density gradient centrifugation and the characteristics of carnitine acyltransferases in these organelles were studied. The carnitine acyltransferase activities in peroxisomes were increased markedly by the treatment of chick embryo with clofibrate, while those in mitochondria did not change. In the liver of clofibrate-treated chick embryo, approximately 50% of total liver carnitine palmitoyltransferase (CPT) activity was present in the peroxisomal fraction. Peroxisomal CPT activity was easily solubilized, in contrast with mitochondrial CPT. The solubilized protein solutions from isolated peroxisomes and mitochondria were separately chromatographed on a column of Blue Sepharose CL-6B after the gel filtration on Sephadex G-25. Peroxisomal CPT was completely bound to a Blue Sepharose CL-6B column and was eluted below 0.25 M KCl, whereas mitochondrial CPT was not retained on the column. The substrate specificity profile of peroxisomal CPT with long-chain acyl-CoAs (C8 to C18) was similar to that of mitochondrial CPT, and the apparent Km value of peroxisomal CPT for palmitoyl-CoA was 5.2 microM, being similar to that of mitochondrial CPT. It is concluded that carnitine long-chain acyltransferase, which is different from mitochondrial CPT and is induced by clofibrate treatment, is present in peroxisomes of chick embryo liver.  相似文献   

17.
The effect of a 2-week clofibrate (0.5%)-fortified diet on peroxisomal palmitoyl-CoA and lignoceroyl-CoA ligases was studied. The activities of palmitoyl-CoA and lignoceroyl-CoA ligases in peroxisomes isolated from clofibrate-treated animals were 4.4- and 4.0-fold higher than those of the controls. The different degrees of increases in these two enzyme activities support the previous conclusions that in peroxisomes palmitoyl-CoA ligase and lignoceroyl-CoA ligase are different enzymes. Since clofibrate treatment increases both of these peroxisomal acyl-CoA ligase activities and normal palmitoyl-CoA ligase is the source of the partial activity for the oxidation of lignoceric acid in X-ALD, treatment with a hypolipidemic drug, which can increase human peroxisomal enzyme activities, may be helpful in lowering the amount of the pathogen, VLC fatty acids, in X-ALD.  相似文献   

18.
The subcellular localizations of carnitine acyltransferase and acyl-CoA hydrolase activities with different chain-length substrates were quantitatively evaluated in human liver by fractionation of total homogenates in metrizamide density gradients and by differential centrifugation. Peroxisomes were found to contain 8-37% of the liver acyltransferase activity, the relative amount depending on the chain length of the substrate. The remaining activity was ascribed to mitochondria, except for carnitine octanoyltransferase, for which 25% of the activity was present in microsomal fractions. In contrast with rat liver, where the activity in peroxisomes is very low or absent, human liver peroxisomes contain about 20% of the carnitine palmitoyltransferase. Short-chain acyl-CoA hydrolase activity was found to be localized mainly in the mitochondrial and soluble compartments, whereas the long-chain activity was present in both microsomal fractions and the soluble compartment. Particle-bound acyl-CoA hydrolase activity for medium-chain substrates exhibited an intermediate distribution, in mitochondria and microsomal fractions, with 30-40% of the activity in the soluble fraction. No acyl-CoA hydrolase activity appears to be present in human liver peroxisomes.  相似文献   

19.
Carnitine octanoyltransferase (COT) in 500g supernatant fluids from mouse liver has a specific activity at least twice that of carnitine acetyltransferase (CAT) or carnitine palmitoyltransferase (CPT). When mice are fed diets containing the lipid-lowering drugs, clofibrate or nafenopin, the specific activity of COT increases 4- and 11-fold, respectively. Liver homogenates from mice fed a control diet, and diets containing clofibrate, nafenopin, or Wy-14,643 were fractionated by sucrose gradient centrifugation, and the subcellular distribution of carnitine acyltransferases was determined. In the controls, peroxisomes contained about 70% of the total COT. The specific activity of COT in the peroxisomal peak was 12-fold greater than either CAT or CPT, and 20-fold greater than the COT activity in the mitochondrial fraction. Treatment with hypolipidemic drugs increased the specific activity of peroxisomal COT 2- to 3-fold and CAT 6- to 12-fold, while mitochondrial COT increased 5- to 11-fold and CAT 19- to 54-fold. COT was purified to homogeneity from livers of mice treated with Wy-14,643. It had an apparent Mr of 60,000 by Sephadex G-100 and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and a maximum activity for octanoyl-CoA with acetyl-CoA and palmitoyl-CoA having activities of 2 and 10%, respectively, when 100 microM acyl-CoA substrates were used. The Km's for 1-carnitine, octanoyl-CoA, palmitoyl-CoA, and acetyl-CoA were 130, 15, 69, and 155 microM, respectively, in the forward direction; and in the reverse direction were 110, 100, 104, and 783 microM for CoASH, octanoylcarnitine, palmitoylcarnitine, and acetylcarnitine, respectively. With Vmax conditions, acetyl-CoA and palmitoyl-CoA had activities of 8 and 26% of the activity for octanoyl-CoA, and acetylcarnitine and palmitoylcarnitine had activities of 7 and 22%, respectively, of the activity for octanoylcarnitine. It is concluded that COT is a separate enzyme present in large amounts in the matrix of mouse liver peroxisomes, with kinetic properties that greatly favor medium-chain acylcarnitine formation.  相似文献   

20.
The peroxisomal beta-oxidation of omega-phenyl fatty acids (PFAs) as model compounds for xenobiotic acyl compounds was investigated. In isolated hepatocytes, omega-phenyllauric acid (PFA12) was chain-shortened to PFAs having an even number of carbon atoms in the acyl side chain. Associated with this reaction, H2O2 generation was observed, the rate of which was markedly enhanced by clofibrate treatment of rats. Also when using isolated peroxisomes, such a chain-shortening of PFA12 occurred, associated with stoichiometrical production of NADH and acetyl-CoA. The CoA-ester form of PFA12 as a substrate and NAD as a cofactor were required in this reaction, indicating the participation of peroxisomal beta-oxidation in the chain-shortening of PFA12. When using PFAs with various chain lengths, the rates of H2O2 generation measured as the peroxisomal beta-oxidation in isolated hepatocytes were similar to those with the corresponding fatty acids, whereas the rates of ketone body production measured as the mitochondrial beta-oxidation were much lower than that with any fatty acid examined. From the study with isolated mitochondria and purified enzymes, it was found that the mitochondrial beta-oxidation of PFAs was carnitine-dependent, and that the activities of carnitine palmitoyltransferase for PFA-CoAs are low. Moreover, the activities of acyl-CoA dehydrogenase for PFA-CoAs were lower than those for fatty acyl-CoAs, while the activities of acyl-CoA oxidase for PFA-CoAs were comparable to those for fatty acyl-CoAs. As a result, relatively long chain PFAs were hardly subjected to mitochondrial beta-oxidation. Based on the maximum enzyme activities of the beta-oxidation, which were measured by following acyl-CoA-dependent NAD reduction in isolated peroxisomes and O2 consumption in isolated mitochondria, about 60% of the beta-oxidation of PFA12 in the rat liver was peroxisomal. In clofibrate-treated rats, the value reached about 85%. From these results it is concluded that the peroxisome is one of the important sites of degradation of xenobiotic acyl compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号