首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of cis- and trans-acting elements in the expression of HIS4 has been examined by using HIS4-lacZ fusions in which lacZ expression is dependent upon the HIS4 5' noncoding region. The cis-acting sequences involved in regulation were defined by studying the effects of the wild-type and various deletions and their revertants on regulation via the general control of amino acid biosynthesis. The role of trans-acting genes was analyzed by studying the regulation of the HIS4-lacZ fusions in strains carrying mutations in the GCN (AAS) or GCD (TRA) genes and in strains carrying the GCN genes on high-copy-number plasmids. These studies have led to the following conclusions. (i) HIS4 is positively regulated by the general control. (ii) At least one copy of the 5'TGACTC3' repeat at -136 is required in cis for this regulation. (iii) Both the GCN4 gene and at least one copy of the repeated sequence are required for expression at the repressed level. (iv) The open reading frames in the 5' noncoding region are not required in either cis or trans for the regulation of HIS4.  相似文献   

2.
A calcium-sensitive cls4 mutant of Saccharomyces cerevisiae ceased dividing in the presence of 100 mM CaCl2, producing large, round, unbudded cells. Since its DNA replication and nuclear division still continued after interruption of normal budding, the cls4 mutant had a defect in bud formation in Ca2+-rich medium. Its calcium content and calcium uptake activity were the same as those of the wild-type strain, suggesting that the primary defect of the mutation was not in a Ca2+ transport system. Genetic analysis showed that the cls4 mutation did not complement the cdc24-1 mutation, which is known to be a temperature-sensitive mutation affecting bud formation and localized cell surface growth at a restrictive temperature. Moreover, cls4 was tightly linked to cdc24, and a yeast 3.4-kilobase-pair DNA fragment carrying both the CLS4 and CDC24 genes was obtained. These results suggest that the cls4 mutation is allelic to the cdc24 mutation. Thus, Ca2+ ion seems to control bud formation and bud-localized cell surface growth.  相似文献   

3.
We placed the Saccharomyces cerevisiae GAL4 gene under control of the galactose regulatory system by fusing it to the S. cerevisiae GAL1 promoter. After induction with galactose, GAL4 is now transcribed at about 1,000-fold higher levels than in wild-type S. cerevisiae. This regulated high-level expression has enabled us to tentatively identify two GAL4-encoded proteins.  相似文献   

4.
In budding yeast, spindle polarity relies on a precise temporal program of cytoplasmic microtubule-cortex interactions throughout spindle assembly. Loss of Clb5-dependent kinase activity under conditions of attenuated Cdc28 function disrupts this program, resulting in diploid-specific lethality. Here we show that polarity loss is tolerated by haploids due to a more prominent contribution of microtubule-neck interactions to spindle orientation inherent to haploids. These differences are mediated by the relative partition of Bud6 between the bud tip and bud neck, distinguishing haploids from diploids. Bud6 localizes initially to the bud tip and accumulates at the neck concomitant with spindle assembly. bud6Delta mutant phenotypes are consistent with Bud6's role as a cortical cue for cytoplasmic microtubule capture. Moreover, mutations that affect Bud6 localization and partitioning disrupt the sequential program of microtubule-cortex interactions accordingly. These data support a model whereby Bud6 sequentially cues microtubule capture events at the bud tip followed by capture events at the bud neck, necessary for correct spindle morphogenesis and polarity.  相似文献   

5.
The sequence of a gene for ribosomal protein L4 of Saccharomyces cerevisiae has been determined. Unlike most ribosomal protein genes of S. cerevisiae this gene has no intron. The single open reading frame predicts that L4 is highly homologous to mammalian ribosomal protein L7a. There appear to be two genes for L4, both of which are active.  相似文献   

6.
Saccharomyces cerevisiae CDC8 gene and its product.   总被引:8,自引:6,他引:8  
  相似文献   

7.
8.
This report describes the isolation of the genes encoding allantoicase (DAL2) and ureidoglycolate hydrolase (DAL3), which are components of the large DAL gene cluster on the right arm of chromosome IX of Saccharomyces cerevisiae. During this work a new gene (DAL7) was identified and found to be regulated in the manner expected for an allantoin pathway gene. Its expression was (i) induced by allophanate, (ii) sensitive to nitrogen catabolite repression, and (iii) responsive to mutation of the DAL80 and DAL81 loci, which have previously been shown to regulate the allantoin degradation system. Hybridization probes generated from these cloned genes were used to analyze expression of the allantoin pathway genes in wild-type and mutant cells grown under a variety of physiological conditions. When comparison was possible, the patterns of mRNA and enzyme levels observed in various strains and physiological conditions were very similar, suggesting that the system is predominantly regulated at the level of gene expression. Although all of the genes seem to be controlled by a common mechanism, their detailed patterns of expression were, at the same time, highly individual and diverse.  相似文献   

9.
10.
11.
The ellipsoidal shape of the yeast Saccharomyces cerevisiae is the result of successive isotropic/apical growth switches that are regulated in a cell cycle-dependent manner. It is thought that growth polarity is governed by the remodeling of the actin cytoskeleton that is itself under the control of the cell cycle machinery. The cell cycle and the morphogenesis cycle are tightly coupled and it has been recently suggested that a morphogenesis/polarity checkpoint control monitors bud emergence in order to maintain the coupling of these two events (Lew, D. J., and S. I. Reed. 1995. J. Cell Biol. 129:739-749). During a screen based on the inability of cells impaired in the budding process to survive when the morphogenesis checkpoint control is abolished, we identified and characterized BED1, a new gene that is required for efficient budding. Cells carrying a disrupted allele of BED1 no longer have the wild-type ellipsoidal shape characteristic of S. cerevisiae, are larger than wild-type cells, are deficient in bud emergence, and depend upon an intact morphogenesis checkpoint control to survive. These cells show defects in polarized growth despite the fact that the actin cytoskeleton appears normal. Our results suggest that Bed1 is a type II membrane protein localized in the endoplasmic reticulum. BED1 is significantly homologous to gma12+, a S. pombe gene coding for an alpha-1,2,-galactosyltransferase, suggesting that glycosylation of specific proteins or lipids could be important for signaling in the switch to polarized growth and in bud emergence.  相似文献   

12.
The Saccharomyces cerevisiae Cdc42p GTPase interacts with multiple regulators and downstream effectors through an approximately 25-amino-acid effector domain. Four effector domain mutations, Y32K, F37A, D38E, and Y40C, were introduced into Cdc42p and characterized for their effects on these interactions. Each mutant protein showed differential interactions with a number of downstream effectors and regulators and various levels of functionality. Specifically, Cdc42(D38E)p showed reduced interactions with the Cla4p p21-activated protein kinase and the Bem3p GTPase-activating protein and cdc42(D38E) was the only mutant allele able to complement the Deltacdc42 null mutant. However, the mutant protein was only partially functional, as indicated by a temperature-dependent multibudded phenotype seen in conjunction with defects in both septin ring localization and activation of the Swe1p-dependent morphogenetic checkpoint. Further analysis of this mutant suggested that the multiple buds emerged consecutively with a premature termination of bud enlargement preceding the appearance of the next bud. Cortical actin, the septin ring, Cla4p-green fluorescent protein (GFP), and GFP-Cdc24p all predominantly localized to one bud at a time per multibudded cell. These data suggest that Cdc42(D38E)p triggers a morphogenetic defect post-bud emergence, leading to cessation of bud growth and reorganization of the budding machinery to another random budding site, indicating that Cdc42p is involved in prevention of the initiation of supernumerary buds during the cell cycle.  相似文献   

13.
14.
15.
Tetraploid strains of Saccharomyces cerevisiae carrying different dosages of the CYR1+ gene have been constructed. Adenylate cyclase activity observed in these tetraploid strains was proportional to the dosage of the active CYR1+ gene. Of the 57 mutants requiring adenosine 3',5'-monophosphate for growth at 35 degrees C, two allelic temperature-sensitive cyr1 mutants produced thermolabile adenylate cyclase. Crude extract and plasma membrane fraction of cyr1 mutant cells had no adenylate cyclase activity when assayed with GTP or 5'-guanylyl imidodiphosphate in the presence of Mn2+ or Mg2+. Plasma membrane and Lubrol-soluble plasma membrane fractions obtained from the temperature-sensitive cyr1 mutant were thermolabile compared with those from the wild-type strain. Three cyr1 mutants carried nonsense mutations susceptible to ochre (UAA) suppressors, SUP3 and SUP-o, and had no detectable level of adenylate cyclase activity. It is concluded that the cyr1 mutants carry lesions in the structural gene for adenylate cyclase.  相似文献   

16.
The RAD4 gene of Saccharomyces cerevisiae is required for the incision of damaged DNA during nucleotide excision repair. When plasmids containing the wild-type gene were transformed into various Escherichia coli strains, transformation frequencies were drastically reduced. Most plasmids recovered from transformants showed deletions or rearrangements. A minority of plasmids recovered from E. coli HB101 showed no evidence of deletion or rearrangement, but when they were transformed into S. cerevisiae on centromeric vectors, little or no complementation of the UV sensitivity of rad4 mutants was observed. Deliberate insertional mutagenesis of the wild-type RAD4 allele before transformation of E. coli restored transformation to normal levels. Plasmids recovered from these transformants contained an inactive rad4 allele; however, removal of the inserted DNA fragment restored normal RAD4 function. These experiments suggest that expression of the RAD4 gene is lethal to E. coli and show that lethality can be prevented by inactivation of the gene before transformation. Stationary-phase cultures of some strains of E. coli transformed with plasmids containing an inactivated RAD4 gene showed a pronounced delay in the resumption of exponential growth, suggesting that the mutant (and, by inference, possibly wild-type) Rad4 protein interferes with normal growth control in E. coli. The rad4-2, rad4-3, and rad4-4 chromosomal alleles were leaky relative to a rad4 disruption mutant. In addition, overexpression of plasmid-borne mutant rad4 alleles resulted in partial complementation of rad4 strains. These observations suggest that the Rad4 protein is relatively insensitive to mutational inactivation.  相似文献   

17.
The biological control of flocculation interactions by factors related to growth under different conditions of aeration was documented with a new assay for flocculence. The degree of flocculence expressed in a genetically defined Saccharomyces cerevisiae strain (FLO1/FLO1 ade1/ade1) remained constant during aerobic growth but varied with aeration. Flocculence was repressed in anaerobically growing cells but was induced in stationary cells or cells returned to aerobic growth. Repression was correlated with the selective inactivation of cell surface lectin-like components. The changes in flocculence were accompanied by changes in 16 extractable proteins separated by electrophoresis; however, a clear correlation between specific protein bands and flocculence could not be established. The study clearly demonstrated that the phenotypic expression of FLO1 could be reproducibly manipulated for experimental purposes by aeration alone.  相似文献   

18.
A model is proposed for the mechanism of flocculation interactions in yeasts in which flocculent cells have a recognition factor which attaches to alpha-mannan sites on other cells. This factor may be governed by the expression of the single, dominant gene FLO1. Isogenic strains of Saccharomyces cerevisiae, differing only at FLO1 and the marker genes ade1 and trp1, were developed to examine the components involved in flocculene. Electron microscopy and concanavalin Aferritin labeling of aggregated cells showed that extensive and intense interactions between cell wall mannan layers mediated cell aggregation. The components of the mannan layer essential for flocculence were Ca2+ ions, alpha-mannan carbohydrates, and proteins. By studying the divalent cation dependence at various pH values and in the presence of competing monovalent cations, flocculation was found to be Ca2+ dependent; however, Mg2+ and Mn2+ ions substituted for Ca2+ under certain conditions. Reversible inhibition of flocculation by concanavalin A and succinylated concanavalin A implicated alpha-branched mannan carbohydrates as one essential component which alone did not determine the strain specificity of flocculence, since nonflocculent strains interacted with and competed for binding sites on flocculent cells. FLO1 may govern the expression of a proteinaceous, lectin-like activity, firmly associated with the cell walls of flocculent cells, which bind to the alpha-mannan carbohydrates of adjoining cells. It was selectively and irreversibly inhibited by proteolysis and reduction of disulfide bonds. The potential of this system as a model for the genetic and biochemical control of cell-cell interactions is discussed.  相似文献   

19.
构建一株酿酒酵母SNF4基因缺失菌株并研究其对乙醇产量的影响。扩增带有SNF4基因上下游同源序列和Kanr筛选标记的SNF4基因敲除组件,转化到酿酒酵母YS2获得阳性克隆子,然后将质粒pSH65转到阳性克隆子中,半乳糖诱导pSH65表达Cre酶切除Kanr筛选标记,获得SNF4等位基因完全缺失菌株YS2-△SNF4。发酵实验结果表明,缺失菌株YS2-△SNF4乙醇产量较出发菌株提高了7.57%。利用Cre-LoxP系统,成功构建了SNF4等位基因完全缺失菌株并提高乙醇产生量。  相似文献   

20.
Telomeric DNA in Saccharomyces is organized into a non-nucleosomal chromatin structure called the telosome that can be released from chromosome ends in soluble form by nuclease digestion (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210). The protein-DNA interactions of soluble telosomes were investigated by monitoring isolated telomeric DNA fragments for the retention of bound protein using both gel mobility shift and nitrocellulose filter-binding assays. Telosomal proteins remained associated with telomeric DNA at concentrations of ethidium bromide that dissociated nucleosomes. The protein-DNA interactions in the yeast telosome were also disrupted by much lower salt concentrations than those known to disrupt either the interactions of ciliate terminus-binding proteins with telomeric DNA or the interactions of histones with DNA in nucleosomes. Taken together, these data corroborate previously published nuclease mapping data indicating that telosomes are distinct in structure from conventional nucleosomes. These data also indicate that yeast do not possess telomere binding proteins similar to those detected in ciliates that remain tightly bound to telomeric DNA even in high salt. In addition, the characteristic gel mobility shift of soluble telosomes could be mimicked by complexes formed in vitro with yeast telomeric DNA and recombinant Rap1p suggesting that Rap1p, a known component of soluble yeast telosomes (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210; Conrad, M. N., Wright, J. H., Wolf, A. J. and Zakian, V. A. (1990) Cell 63, 739-750), is likely to be the major structural protein bound directly to yeast telomeric DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号