首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
9 alpha-Hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) is catalysed by 3-ketosteroid 9 alpha-hydroxylase (KSH), a key enzyme in microbial steroid catabolism. Very limited knowledge is presently available on the KSH enzyme. Here, we report for the first time the identification and molecular characterization of genes encoding KSH activity. The kshA and kshB genes, encoding KSH in Rhodococcus erythropolis strain SQ1, were cloned by functional complementation of mutant strains blocked in AD(D) 9 alpha-hydroxylation. Analysis of the deduced amino acid sequences of kshA and kshB showed that they contain domains typically conserved in class IA terminal oxygenases and class IA oxygenase reductases respectively. By definition, class IA oxygenases are made up of two components, thus classifying the KSH enzyme system in R. erythropolis strain SQ1 as a two-component class IA monooxygenase composed of KshA and KshB. Unmarked in frame gene deletion mutants of parent strain R. erythropolis SQ1, designated strains RG2 (kshA mutant) and RG4 (kshB mutant), were unable to grow on steroid substrates AD(D), whereas growth on 9 alpha-hydroxy-4-androstene-3,17-dione (9OHAD) was not affected. Incubation of these mutant strains with AD resulted in the accumulation of ADD (30-50% conversion), confirming the involvement of KshA and KshB in AD(D) 9 alpha-hydroxylation. Strain RG4 was also impaired in sterol degradation, suggesting a dual role for KshB in both sterol and steroid degradation.  相似文献   

2.
采用紫外线、亚硝基胍复合诱变雄甾-4-烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)的转化产生菌Mycobacterium sp.,结合平板筛选,获得一株遗传性状稳定单产ADD的突变菌株Mycobacterium sp.-11,其ADD质量浓度达到1246ms/L,比原始菌株(484mg/L)提高了150%,经初步优化后发酵液中ADD最高达到1430mg/L,发酵液中ADD质量占ADD、AD两产物质量总和的比例由70%提高到99.1%。  相似文献   

3.
Arthrobacter simplex ATCC 6946 free and immobilized cells were assayed for their ability to convert 4-androsten-3,17-dione (AD) to 1,4-androstadien-3,17-dione (ADD) in aqueous and liposomal media. Bioconversions were carried out in a 100 ml flask containing 25 ml of AD liposomal or aqueous medium for 3h, and AD concentrations ranging from 0.3 to 1.0 mM were tested. AD/ADD ratios in samples were determined by HPLC. Biotransformation of substrate entrapped in multilamellar vesicles (MLV) was demonstrated to be better than the corresponding free form. In the former case, 2h were necessary to completely bioconvert 1 mM AD. By contrast, 3h were needed to reach 50% bioconversion in (4%) ethanol medium containing 0.63 mM AD. The liposomal medium allows us to perform steroid conversions at high concentrations of AD, reusing immobilized cells in suitable conditions which are non-toxic for microorganisms.  相似文献   

4.
Cyclodextrins (CDs) can improve productivity in the biotransformation of steroids by increasing conversion rate, conversion ratio, or substrate concentration. However, little is known of the proportion of products formed by multi-catabolic enzymes, e.g., via sterol side chain cleavage. Using three strains with different androst-1,4-diene-3,17-dione (ADD) to androst-4-ene-3,17-dione (AD) ratios, Mycobacterium neoaurum TCCC 11028 (MNR), M. neoaurum TCCC 11028 M1 (MNR M1), and M. neoaurum TCCC 11028 M3 (MNR M3), we found that hydroxypropyl-β-cyclodextrin (HP-β-CD) can appreciably increase the ratio of ADD to AD, the reaction rate, and the molar conversion. In the presence of HP-β-CD, conversion of 0.5?g/L of phytosterol (PS) was 2.4, 2.4, and 2.3 times higher in the MNR, MNR M1, and MNR M3 systems, respectively, than in the controls. The ADD proportion increased by 38.4, 61.5, and 5.9?% compared with the control experiment, which resulted in a strong shift in the ADD/AD ratio in the ADD direction. Our results imply that the three PS-biotransforming strains cause efficient side chain degradation of PS, and the increased conversion of PS when using HP-β-CD may be associated with the higher PS concentration in each case. A similar solubilizing effect may not induce a prominent influence on the ADD/AD ratio. However, the different activities of the Δ(1)-dehydrogenase of PS-biotransforming strains result in different incremental percentage yields of ADD and ADD/AD ratio in the presence of HP-β-CD.  相似文献   

5.
通过分枝杆菌(Mycobacteriumsp.)M3限制性降解胆固醇侧链获得了产物雄甾-4-烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)。优化了胆固醇的投料时间、投料方式、培养基初始pH和葡萄糖浓度等工艺参数。将羟丙基-β-环糊精(HP-β-CD)应用于转化反应中,确定了HP-β-CD的最佳添加时间和添加量,使AD(D)生成率由初始对照的30%提高到60%,转化至72 h时AD(D)生成率达48%,是同期对照的4.0倍,生成率与生成速率均得到显著提高。在添加HP-β-CD的最佳转化条件下,AD(D)生成率达到70%,是初始对照的2.3倍。  相似文献   

6.
M Smith  J Zahnley  D Pfeifer    D Goff 《Applied microbiology》1993,59(5):1425-1429
Mycobacterium strain DP was isolated from marine coastal sediment and tested for its ability to oxidize cholesterol in Tween 80-cholesterol (2.59 mM) medium. Strain DP degraded cholesterol to 4-cholesten-3-one (cholestenone), 4-androsten-3,17-dione (AD), 1,4-androstadien-3,17-dione (ADD), testosterone, and 1-dehydrotestosterone (DHT). Cholesterol disappeared in about 4 days. Cholestenone, AD, testosterone, and DHT accumulations were transient with peak concentrations of 300, 600, 30 to 40, and 21 microM. ADD production peaked after 6 days with a concentration of 1,100 microM. Peak ADD concentrations and production rates compared well with those reported for strain NRRL B3683 on cyclodextrin medium. Tween 80 medium was superior to finely dispersed cholesterol particles for both strains. In comparison, NRRL B3683 (patented for its ability to accumulate AD and ADD) on Tween 80 medium transiently accumulated more AD (approximately 1,000 microM) than did strain DP, but ADD accumulations (200 microM) were significantly lower than those for strain DP. Strain DP could be adapted to grow on ADD, which was initially inhibitory at 3.25 mM. ADD-adapted strain DP cultures produced approximately four times as much DHT from ADD than unadapted cultures did from cholesterol, showing that additional manipulation might enhance testosterone production. We believe that ADD toxicity might account for the low ADD accumulations by NRRL B3683 in Tween 80 medium.  相似文献   

7.
A spectrophotometric method for simultaneously estimating 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) in a binary mixture has been developed using sulphuric acid chromogens. The method has been used to estimate both AD and ADD during C-1(2)-dehydrogenation by Mycobacterium fortuitum NRRL B-8153.The authors are with the School of Life Sciences, Devi Ahilya Vishwavidyalaya. Vigyan Bhawan, Khandwa Road, Indore-452 001, India.  相似文献   

8.
4-Androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) are the main precursors in the production of steroidal drugs from phytosterols. To carry out the bioconversion, different inoculation strategies have been proposed. We compared the use of whole fermented broth and of free resting cells of two mutant strains of Mycobacterium sp. (DSMZ2966 and DSMZ2967) in shake flasks. Also the effect of the nitrogen source (ammonium sulfate, ammonium chloride and ammonium nitrate) and the sterol to biomass ratio at high substrate concentrations (19.2 g/l and 48.1 g/l) was evaluated. We found that the bioconversion with free resting cells (cell pellets) is more efficient than that with whole fermented broth, increasing both AD and ADD production. The use of ammonium nitrate in the culture medium and low substrate to biomass ratios (close to 1.0) increased the production yield. We also found that the bioconversion can be run at high substrate concentration under non-sterile conditions.  相似文献   

9.
Direct sterol conversion of sugar cane mud (residue) by Mycobacterium sp. was demonstrated to be possible technologically, thus avoiding sugar cane oil extraction and further processes of extraction and purification of phytosterols from this oil. Indeed, mycobacterial cells were able to convert phytosterols from sugar cane mud into 4-androstene-dione (AD) and 1,4 androsta-diene-3,17-dione (ADD). For the various concentrations assayed, concomitant higher yields for both androstanes were achieved at 20% (w/w) sugar cane mud in media. Furthermore, conversions were similar to those from other substrates, such as a mixture of phytosterols. The results suggest that the mycobacterial cell is able to easily access and bioconvert sugar cane mud phytosterols.  相似文献   

10.
Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism.  相似文献   

11.
Abstract-Soybean sterols were converted into androst-4-ene-3,17-dione (AD) and 9alpha-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) using three actinobacterium strains. The transformation of a microcrystallic substrate (particle size 5-15 nm) or the transformation in the presence of randomly methylated beta-cyclodextrin (MCD) were carried out by Mycobacterium neoaurum with a phytosterol load of 30 g/l over 144 h with an AD content of 14.5 and 15.2 g/l, respectively. AD obtained in the presence of MCD was transformed into ADD (13.5 g/l) by Pimelobacter simplex cells over 3 h and into 9-OH-AD by Rhodococcus erythropolis cells after 22 h without the isolation of AD from the cultural liquid. The technical product ADD was obtained in 75% yield, based on phytosterol. It contained as impurity 1.25% of AD and 1.5% of 1,2-dehydrotestosterone. In a control experiment-the process of 1,2-dehydrogenation of 20 g/l AD in the water solution of MCD-no by products were isolated. Thus, it is more expedient to introduce the 1,2-double bond into pure AD, whereas R. erythropolis strain with low destructive activity towards steroid nucleus can be used in the mixed culture with M. neoaurum. The crystal product contained, according to HPLC, 80% of 9-OH-AD, and 1.5 AD was combined. The yield of 9-OH-AD (m.p. 218-220 degrees C) based on transformed phytosterol was 56%.  相似文献   

12.
11α-hydroxylated steroid synthons are one of the most important commercially pharmaceutical intermediates used for the production of contraceptive drugs and glucocorticoids. These compounds are currently produced by biotransformation using fungal strains in two sequential fermentation steps. In this work, we have developed by a rational design new recombinant bacteria able to produce 11α-hydroxylated synthons in a single fermentation step using cholesterol (CHO) or phytosterols (PHYTO) as feedstock. We have designed a synthetic operon expressing the 11α-hydroxylating enzymes from the fungus Rhizopus oryzae that was cloned into engineered mutant strains of Mycolicibacterium smegmatis that were previously created to produce 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) from sterols. The introduction of the fungal synthetic operon in these modified bacterial chassis has allowed producing for the first time 11αOH-AD and 11αOH-ADD with high yields directly from sterols in a single fermentation step. Remarkably, the enzymes of sterol catabolic pathway from M. smegmatis recognized the 11α-hydroxylated intermediates as alternative substrates and were able to efficiently funnel sterols to the desired hydroxylated end-products.  相似文献   

13.
Nostoc muscorum PTCC 1636 was examined for its ability to convert androst-4-en-3,17-dione (AD) and androst-1,4-dien-3,17-dione (ADD) to their 17-hydroxy related derivatives in BG-11 medium. Bioconversion procedures were carried out at 25 °C without shaking. The metabolites obtained were purified using chromatographic methods and characterized as testosterone and 1-dehydrotestosterone on the basis of their spectroscopic features. In both cases, the bioreaction characteristics observed were 17-carbonyl reduction.  相似文献   

14.
Summary Testosterone production byMyc. sp. NRRL B-3683 is discussed. The unexpected finding that testosterone is not formed by single reduction of 17-keto group of 4-androstene-3,17-dione (AD) but by a double reduction of both 17-keto group and 1–2 doble bound of 1,4-androstadiene-3,17-dione (ADD) is presented.  相似文献   

15.
The production of several high value steroid drugs, used as progestational, adrenocortical, estrogenic and contraceptive agents, is mostly derived from 4-androstene-dione (AD) and 1,4 androsta-diene-3,17-dione (ADD). Three Vietnamese phytosterols mixtures named VN-1, VN-2 and VN-3, isolated from soybean oil may be efficiently converted into these key compounds by mycobacterial cells. Their general phytosterol composition was 55.39, 70.55, 70.19% for VN-1, VN-2 and VN-3, respectively. Moreover, values of campesterol, β-sitosterol and stigmasterol were determined. After 120 h of shaking in suitable culture media and temperature, maximal yield conversion to ADD was higher than 70% and up to 64% to AD, for the various phytosterols mixtures assays. These results may be better when scaling-up such a procedure of phytosterols conversion.  相似文献   

16.
1-Ene-steroid reductase of Mycobacterium sp. NRRL B-3805   总被引:1,自引:0,他引:1  
The microbial enzymatic reduction of 1,4-androstadiene-3,17-dione (ADD) to 4-androstene-3,17-dione (AD), testosterone and 1-dehydrotestosterone (DHT) is described. Two reducing activities observed in washed cell suspensions and cell free extracts of Mycobacterium sp. NRRL B-3805 were found to account for these bioconversions. One was a 1-ene-steroid reductase and the other a 17-keto steroid reductase. The first reducing activity was found to appear in the soluble cell fraction whereas the latter could be precipitated by centrifugation. Maximum 1-ene-steroid reductase specific activity was achieved during the exponential growth phase of the organism and significantly increased upon induction with ADD. The 1-ene-steroid reductase was partially purified (30-fold) by ammonium sulfate fractionation, gel-filtration and ion-exchange chromatography, and was eluted from a Sephacryl S-300 column with an Mr = 115,000. The 1-ene-steroid reductase activity was NADPH-dependent and had specificity towards steroid compounds containing C-1,2 double bond with an apparent Km for ADD of 2.2 X 10(-5) M. The reverse reaction catalyzing C-1,2 dehydrogenation could not be detected in our preparations. The results suggest that in Mycobacterium sp NRRL B-3805 and B-3683 the steroid C-1,2 dehydrogenation and 1-ene reduction are two separable activities.  相似文献   

17.
Soybean sterols were converted into androst-4-ene-3,17-dione (AD) and 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) using three actinobacterium strains. The transformation of a microcrystallic substrate (particle size 5–15 μm) or the transformation in the presence of randomly methylated β-cyclodextrin (MCD) were carried out by Mycobacterium neoaurum with a phytosterol load of 30 g/l over 144 h with an AD content of 14.5 and 15.2 g/l, respectively. AD obtained in the presence of MCD was transformed into ADD (13.5 g/l) by Pimelobacter simplex cells over 3 h and into 9-OH-AD by Rhodococcus erythropolis cells after 22 h without the isolation of AD from the cultural liquid. The crude product ADD was obtained in 75% yield, based on phytosterol. It contained as by-products 1.25% of AD and 1.5% of 1,2-dehydrotestosterone. In a control experiment—the process of 1,2-dehydrogenation of 20 g/l AD in the water solution of MCD—no by-products were isolated. Thus, it is more expedient to introduce the 1,2-double bond into pure AD, whereas R. erythropolis strain with low destructive activity towards steroid nucleus can be used in the mixed culture with M. neoaurum. The crystal product contained, according to HPLC, 80% of 9-OH-AD, and 1.5% AD was obtained. The yield of 9-OH-AD (m.p. 218–220°C) based on transformed phytosterol was 56%.  相似文献   

18.
Mycobacterium sp. VKM Ac-1815D and its derivatives with altered resistance to antibacterial agents were able to produce androst-4-ene-3,17-dione (AD) as a major product from sitosterol. In this study, those strains were subjected to subsequent mutagenization by chemical agents and UV irradiation in combination with sitosterol selection pressure. The mutant Mycobacterium sp. 2-4 M was selected, being capable of producing 9-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) as a major product from sitosterol, with a 50% molar yield. Along with 9-OH-AD, both AD and 9-hydroxylated metabolites with a partially degraded side-chain were formed from sitosterol by the mutant strain. The strain was unable to degrade 9-OH-AD, but degraded androsta-1,4-diene-3,17-dione (ADD), thus indicating a deficiency in steroid 1(2)-dehydrogenase and the presence of 9-hydroxylase activity.  相似文献   

19.
Microbial ?(1)-dehydrogenation is one of the most important transformations in the synthesis of steroid hormones. In this study, a 3-ketosteroid-?(1)-dehydrogenase (kstD(F)) involved in fusidane antibiotic biosynthesis from Aspergillus fumigatus CICC 40167 was characterized for use in steroid transformation. KstD(F) encodes a polypeptide consisting of 637 amino acid residues. It shows 51% amino acid identity with a kstD from Thermomicrobium roseum DSM 5159. Expression of kstD(F) in Escherichia coli and Pichia pastoris showed that all kstD(F) activity is located in the cytoplasm. This indicates that it is a soluble intracytoplasmic enzyme, unlike most kstDs from bacteria, which are membrane-bound. The expression of kstD(F) was performed in P. pastoris, both intracellularly and extracelluarly. The intracellularly expressed protein displayed good activity in steroid transformation, while the extracellularly expressed protein showed nothing. Interestingly, the engineered P. pastoris KM71 (KM71(I)) and GS115 (GS115(I)) showed different transformation activities for 4-androstene-3,17-dione (AD) when kstD(F) was expressed intracellularly. Under the same conditions, KM71(I) was found capable of transforming 1.0 g/l AD to 1,4-androstadiene-3,17-dione (ADD), while GS115(I) could transform 1.5 g/l AD to both ADD and boldenone (BD). The production of BD is attributed to a 17β-hydroxysteroid dehydrogenase in P. pastoris GS115(I), which catalyzes the reversible reaction between C17-one and C17-alcohol of steroids. The conversion of AD by GS115(I) and KM71(I) may provide alternative means of preparing ADD or BD. In brief, we show here that kstD(F) is a promising enzyme in steroid ?(1)-dehydrogenation that is propitious to construct genetically engineered steroid-transforming recombinants by heterologous overexpression.  相似文献   

20.
To gain insight into the catalytic function of aromatase, we studied aromatization of a series of 6alpha- and 6beta-ether-substituted (methoxy, ethoxy, and n-butoxy) androst-4-ene-3,17-dione (AD) steroids (1 and 2) and their androsta-1,4-diene-3,17-dione (ADD) derivatives (3 and 4) with human placental aromatase by gas chromatography-mass spectrometry (GC-MS). Among the steroids examined, 6beta-methoxy and 6beta-ethoxyADDs (4a and 4b) are suicide substrates of aromatase. All of the steroids were found to be converted into the corresponding 6-alkoxy estrogens. Introduction of the alkoxy groups at C-6 of AD or ADD decreased the ability of these to serve as a substrate of aromatase. In 6alpha-alkoxy steroid series, compounds 1 and 3, the aromatization rate increased by elongating the 6-methoxy group up to the n-butoxy group whereas, in the 6beta-isomers series, 2 and 4, the rate decreased due to this structural modification. 6beta-Alkoxy steroids, 2 and 4, including the suicide substrates, were extremely poor substrates for the aromatization reaction. Apparent K(m) values obtained for 6alpha-alkoxy compounds 1 and 3 were similar to each other, ranging from 92 to 111nM, as shown by their previously-obtained K(i) values. The findings indicate that the stereochemistry as well as the bulkiness of the 6-ether-substituent play an important role in the ability to serve as a substrate. It is also predicted that the aromatization reaction and the mechanism-based inactivation reaction would be related and have a definite partition number which is characteristic to the compound in a series of suicide substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号