首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein–protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5−/−) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4−/−) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.  相似文献   

2.
Fibulin-5 is a 66 kDa modular, extracellular matrix protein that localizes to elastic fibers. Although in vitro protein–protein binding studies have shown that fibulin-5 binds many proteins involved in elastic fiber formation, the specific role of fibulin-5 in elastogenesis remains unclear. To provide a more detailed analysis of elastic fiber assembly in the absence of fibulin-5, the dermis of wild-type and fibulin-5 gene knockout (Fbln5?/?) mice was examined with electron microscopy (EM). Although light microscopy showed apparently normal elastic fibers near the hair follicles and the absence of elastic fibers in the intervening dermis of the Fbln5?/? mouse, EM revealed the presence of aberrantly assembled elastic fibers in both locales. Instead of the elastin being incorporated into the microfibrillar scaffold, the elastin appeared as globules juxtaposed to the microfibrils. Desmosine analysis showed significantly lower levels of mature cross-linked elastin in the Fbln5?/? dermis, however, gene expression levels for tropoelastin and fibrillin-1, the major elastic fiber components, were unaffected. Based on these results, the nature of tropoelastin cross-linking was investigated using domain specific antibodies to lysyl oxidase like-1 (LOXL-1). Immunolocalization with an antibody to the N-terminal pro-peptide, which is cleaved to generate the active enzyme, revealed abundant staining in the Fbln5?/? dermis and no staining in the wild-type dermis. Overall, these results suggest two previously unrecognized functions for fibulin-5 in elastogenesis; first, to limit the extent of aggregation of tropoelastin monomers and/or coacervates and aid in the incorporation of elastin into the microfibril bundles, and second, to potentially assist in the activation of LOXL-1.  相似文献   

3.
Interactions between the extracellular matrix (ECM) and cells are critical in embryonic development, tissue homeostasis, physiological remodeling, and tumorigenesis. Matricellular proteins, a group of ECM components, mediate cell-ECM interactions. One such molecule, Fibulin-5 is a 66-kDa glycoprotein secreted by various cell types, including vascular smooth muscle cells (SMCs), fibroblasts, and endothelial cells. Fibulin-5 contributes to the formation of elastic fibers by binding to structural components including tropoelastin and fibrillin-1, and to cross-linking enzymes, aiding elastic fiber assembly. Mice deficient in the fibulin-5 gene (Fbln5) exhibit systemic elastic fiber defects with manifestations of loose skin, tortuous aorta, emphysematous lung and genital prolapse. Although Fbln5 expression is down-regulated after birth, following the completion of elastic fiber formation, expression is reactivated upon tissue injury, affecting diverse cellular functions independent of its elastogenic function. Fibulin-5 contains an evolutionally conserved arginine-glycine-aspartic acid (RGD) motif in the N-terminal region, which mediates binding to a subset of integrins, including α5β1, αvβ3, and αvβ5. Fibulin-5 enhances substrate attachment of endothelial cells, while inhibiting migration and proliferation in a cell type- and context-dependent manner. The antagonistic function of fibulin-5 in angiogenesis has been demonstrated in vitro and in vivo; fibulin-5 may block angiogenesis by inducing the anti-angiogenic molecule thrompospondin-1, by antagonizing VEGF165-mediated signaling, and/or by antagonizing fibronectin-mediated signaling through directly binding and blocking the α5β1 fibronectin receptor. The overall effect of fibulin-5 on tumor growth depends on the balance between the inhibitory property of fibulin-5 on angiogenesis and the direct effect of fibulin-5 on proliferation and migration of tumor cells. However, the effect of tumor-derived versus host microenvironment-derived fibulin-5 remains to be evaluated.  相似文献   

4.
Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.  相似文献   

5.
Elastic fibers contribute to the structural support of tissues and to the regulation of cellular behavior. Mice deficient for the fibulin-5 gene (fbln5(-/-)) were used to further elucidate the molecular mechanism of elastic fiber assembly. Major elastic fiber components were present in the skin of fbln5(-/-) mice despite a dramatic reduction of mature elastic fibers. We found that fibulin-5 preferentially bound the monomeric form of elastin through N-terminal and C-terminal elastin-binding regions and to a preexisting matrix scaffold through calcium-binding epidermal growth factor (EGF)-like (CB-EGF) domains. We further showed that adenovirus-mediated gene transfer of fbln5 was sufficient to regenerate elastic fibers and increase elastic fiber-cell connections in vivo. A mutant fibulin-5 lacking the first 28 amino acids of the first CB-EGF domain, however, was unable to rescue elastic fiber defects. Fibulin-5 thus serves as an adaptor molecule between monomeric elastin and the matrix scaffold to aid in elastic fiber assembly. These results also support the potential use of fibulin-5 as a therapeutic agent for the treatment of elastinopathies.  相似文献   

6.
Fibulin-1, a member of the emerging family of fibulin proteins, is a component of elastic extracellular matrix fibers, basement membranes and blood. Homologs of fibulin-1 have been described in man, mouse and zebrafish. In this study, we describe the isolation and sequencing of chicken fibulin-1C and D cDNA variants. We also describe identification of a C. elegans cDNA encoding fibulin-1D and cosmids containing the C. elegans fibulin-1 gene. Using the cDNA, RT-PCR and computer-based analysis of genomic sequences, the exon/intron organization of the C. elegans fibulin-1 gene was determined. The C. elegans fibulin-1 gene is located on chromosome IV, is approximately 6 kb in length, contains 16 exons and encodes fibulin-1C and D variants. Comparative analysis of the deduced amino acid sequences of nematode and chicken fibulin-1 variants with other known vertebrate fibulin-1 polypeptides showed that the number and organization of structural modules are identical. The results of this study indicate that the structure of the fibulin-1 protein has remained highly conserved over a large period of evolution, suggestive of functional conservation.  相似文献   

7.
Fibulin-5, previously known as DANCE and EVEC, is a secreted extracellular matrix protein that functions as a scaffold for elastin fiber assembly and as a ligand for integrins alphavbeta3, alphavbeta5, and alpha9beta1. Fibulin-5 is developmentally regulated in the lung, and lung air space enlargement develops in mice deficient in fibulin-5. Fibulin-5 is also induced in adult lung following lung injury by hyperoxia. To further examine the role of fibulin-5 during repair of lung injury, we assessed fibulin-5 expression during elastase-induced emphysema in C57/b mice. Mice were treated with either saline or elastase via the trachea, and the lung was examined 20 days after treatment. Fibulin-5 mRNA was induced almost fourfold, whereas elastin mRNA was minimally elevated. Immunohistochemistry studies showed that fibulin-5 was induced in cells within the alveolar wall following elastase treatment. Western analysis demonstrates that fibulin-5 was strongly expressed in isolated primary lung interstitial fibroblasts. Fibulin-5 protein was localized to the fibroblast cell layer in culture, and brief elastase treatment degraded the protein. Intact fibulin-5 did not accumulate in the culture media. Treatment of fibroblasts with the proinflammatory cytokine interleukin-1beta abolished fibulin-5 mRNA expression. Our results indicate that fibulin-5 is coordinately expressed and regulated with elastin in lung fibroblasts and may serve a key role during lung injury and repair.  相似文献   

8.
Cutis laxa is a condition characterized by redundant, pendulous, and inelastic skin. We identified a patient with recessive inheritance of a missense mutation (169G-->A; E57K) in the Fibulin-4 gene. She had multiple bone fractures at birth and was diagnosed with cutis laxa, vascular tortuosity, ascending aortic aneurysm, developmental emphysema, inguinal and diaphragmatic hernia, joint laxity, and pectus excavatum by age 2 years. Her skin showed markedly underdeveloped elastic fibers, and the extracellular matrix laid down by her skin fibroblasts contained dramatically reduced amounts of fibulin-4. We conclude that fibulin-4 is necessary for elastic fiber formation and connective tissue development.  相似文献   

9.
Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils.Fibulins are a family of extracellular glycoproteins containing contiguous calcium-binding epidermal growth factor-like domains (cbEGFs)3 and a characteristic C-terminal fibulin (FC) domain (13). Recent studies have revealed that fibulin-4 and -5 are both essential for elastic fiber formation (47). Fibulin-4 is widely expressed from early embryogenesis and is necessary for normal vascular, lung, and skin development, since mice that lack fibulin-4 do not form elastic fibers and die perinatally (5). Furthermore, mice with reduced fibulin-4 expression develop aneurysms (8). Fibulin-5 is abundant in the aorta and large arteries during embryogenesis and following vascular injury (9, 10). Lack of fibulin-5 causes a less severe phenotype, with viable homozygous mice, but the elastic fibers in skin, lungs, and aorta are irregular and fragmented (6, 7), and there is altered vascular remodeling (11). These mice models also highlight that fibulin-4 and -5 have non-compensatory roles in elastic fiber formation. Mutations in both molecules can cause cutis laxa, a heritable disorder associated with elastic fiber degeneration leading to sagging skin, vascular tortuosity, and emphysematous lungs (1215). A third isoform, fibulin-3, may play a minor role in elastic fiber formation, since its deficiency disrupts elastic fibers in Bruch''s membrane of the eye (16) and vaginal tissues (17).Elastic fiber formation is a complex multistep process (1820). Initial pericellular microassembly of tropoelastin, which may involve the 67-kDa elastin-binding protein receptor, generates elastin globules that are stabilized by desmosine cross-links catalyzed mainly by lysyl oxidase (LOX) but also by LOXL1 (LOX-like 1). These globules are deposited on a fibrillin microfibril template, where they coalesce and undergo further cross-linking to form the elastin core of mature fibers. The ability of fibulin-4 and -5 to bind tropoelastin and fibrillin-1, the major structural component of microfibrils, supports a model in which these fibulins direct elastin deposition on microfibrils (47, 2125). This model does not delineate the unique molecular contributions of fibulin-4 and -5 to elastic fiber formation, but some molecular differences have emerged. Tropoelastin was bound more strongly by fibulin-5 than by fibulin-4, whereas fibulin-5 was at the microfibril-elastin interface, but perichondrial fibulin-4 localized mainly to microfibrils (4).Fibulin-4 null mice offer tantalizing clues to how fibulin-4 contributes to elastic fiber formation (5). They had dramatically reduced (94%) desmosine cross-links despite no change in elastin or LOX expression levels, and electron-dense rodlike structures were prominent within elastin aggregates. Morphologically similar structures seen after chemically inhibiting LOX were previously identified as glycosaminoglycans, which can bind charged free ϵ-amino groups on lysines in tropoelastin (26). However, fibulin-4+/− mice showed ∼20% increase in desmosine (5). LOX-null mice have phenotypic features similar to those of fibulin-4 null mice, dying perinatally with 60% reduced desmosine cross-links and major abnormalities in vascular and other elastic tissues (27, 28). In contrast, LOXL1-null mice are viable but have reduced desmosine (29), whereas fibulin-5 null mice have a 16% reduction in desmosine cross-links and survive well into adulthood (7). Detection of the LOXL1 pro-domain in fibulin-5 null mice skin but not wild-type skin implicates fibulin-5 in activation of LOXL1 (30).We and others have shown that fibrillin-1 and the microfibrillar protein MAGP-1 can both directly bind tropoelastin (3134). However, the fibulin-null mice show that the fibrillin-1 interaction with tropoelastin is insufficient to support elastic fiber formation in vivo. Fibulin-5 has been reported to facilitate tropoelastin binding to the N-terminal half of fibrillin-1 (21). A study of elastin polypeptide self-assembly through coacervation and maturation phases showed that, although the N-terminal half of fibrillin-1 increased maturation velocity and droplet clustering, fibulin-4 and -5 both slowed maturation and limited globule growth (35). These studies imply that fibulins and fibrillin-1 act together to regulate elastin accretion on microfibrils.To gain further insights into the contributions of fibulin-4 and -5 to elastic fiber formation, we have delineated how they interact with tropoelastin, LOX, and fibrillin-1. Novel findings are that fibulin-4 directly binds LOX, and this interaction enhances fibulin-4 binding to tropoelastin, thus forming a ternary complex that may be critical for elastin cross-linking. Fibulin-5 can concurrently bind fibulin-4 and tropoelastin, but the interaction of both fibulins with fibrillin-1 strongly inhibits their binding to tropoelastin. These interactions indicate the molecular basis of how fibulins act as chaperones for deposition of elastin onto microfibrils. Our study thus provides a molecular account of the differential roles of fibulins-4 and -5 in elastic fiber formation.  相似文献   

10.
Fibulin-5 is believed to play an important role in the elastic fiber formation. The present experiments were carried out to characterize the molecular interaction between fibulin-5 and tropoelastin. Our data showed that the divalent cations of Ca(2+), Ba(2+) and Mg(2+) significantly enhanced the binding of fibulin-5 to tropoelastin. In addition, N-linked glycosylation of fibulin-5 does not require for the binding to tropoelastin. To address the fibulin-5 binding site on tropoelastin constructs containing, exons 2-15 and exons 16-36, of tropoelastin were used. Fibulin-5 binding was significantly reduced to either fragment and also to a mixture of the two fragments. These results suggested that the whole molecule of tropoelastin was required for the interaction with fibulin-5. In co-immunoprecipitation experiments, tropoelastin binding to fibulin-5 was enhanced by an increase of temperature and sodium chloride concentration, conditions that enhance the coacervation of tropoelastin. The binding of tropoelastin fragments to fibulin-5 was directly proportional to their propensity to coacervate. Furthermore, the addition of fibulin-5 to tropoelastin facilitated coacervation. Taken together, the present study shows that fibulin-5 enhances elastic fiber formation in part by improving the self-association properties of tropoelastin.  相似文献   

11.
Evolution of elastic fibers is associated with establishment of the closed circulation system. Primary roles of elastic fibers are to provide elasticity and recoiling to tissues and organs and to maintain the structural integrity against mechanical strain over a lifetime. Elastic fibers are comprised of an insoluble elastin core and surrounding mantle of microfibrils. Elastic fibers are formed in a regulated, stepwise manner, which includes the formation of a microfibrillar scaffold, deposition and integration of tropoelastin monomers into the scaffold, and cross-linking of the monomers to form an insoluble, functional polymer. In recent years, an increasing number of glycoproteins have been identified and shown to be located on or surrounding elastic fibers. Among them, the short fibulins-3, -4 and -5 particularly drew attention because of their potent elastogenic activity. Fibulins-3, -4 and -5 are characterized by tandem repeats of calcium binding EGF-like motifs and a C-terminal fibulin module, which is conserved throughout fibulin family members. Initial biochemical characterization and gene expression studies predicted that fibulins might be involved in structural support and/or matrix–cell interactions. Recent analyses of short fibulin knockout mice have revealed their critical roles in elastic fiber development in vivo. We review recent findings on the elastogenic functions of short fibulins and discuss the molecular mechanism underlying their activity in vitro and in vivo.  相似文献   

12.
Fibulin-4 is a 50 kDa glycoprotein of elastic fibers and plays an important role in development and function of elastic tissues. Fibulin-4 consists of a tandem array of five calcium-binding epidermal growth factor-like modules flanked by N- and C-terminal domains. Mutations in the human fibulin-4 gene EFEMP2 have been identified in patients affected with various arteriopathies including aneurysm, arterial tortuosity, or stenosis, but the molecular basis of most genotype-phenotype correlations is unknown. Here we present biochemical and computer modelling approaches designed to gain further insight into changes in structure and function of two fibulin-4 mutations (E126K and D203A), which are potentially involved in Ca2+ binding in the EGF2 and EGF4 domain, respectively. Using recombinantly produced fibulin-4 mutant and wild type proteins we show that both mutations introduced additional protease cleavage sites, impaired extracellular assembly into fibers, and affected binding to to fibrillin-1, latent TGF-β-binding proteins, and the lysyl oxidase LOXL2. Molecular dynamics studies indicated that the E126K and D203A mutations do not necessarily result in a direct loss of the complexed Ca2+ ion after 500 ns simulation time, but in significantly enhanced fluctuations within the connecting loop between EGF3 and EGF4 domains and other conformational changes. In contrast, intentionally removing Ca2+ from EGF4 (D203A ΔCa) predicted dramatic changes in the protein structure. These results may explain the changes in protease cleavage sites, reduced secretion and impaired extracellular assembly of the E126K and D203A fibulin-4 mutants and provide further insight into understanding the molecular basis of the associated clinical phenotypes.  相似文献   

13.
Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.KEY WORDS: Latent transforming growth factor β-binding protein 4, Ltbp-4, Ltbp-4L, Ltbp-4S, Autosomal recessive cutis laxa type 1C, ARCL1C, Elastogenesis, Extracellular matrix, ECM, Fibulin-4, Fibulin-5  相似文献   

14.
Fibulins are evolutionarily conserved extracellular matrix (ECM) proteins that assemble in elastic fibers and basement membranes. Caenorhabditis elegans has a single fibulin gene that produces orthologs of vertebrate fibulin-1 C and D splice forms. In a structure-function analysis of fibulin-1 domains, a series of deletion constructs show that EGF repeats 4 and 5 are required for the hemicentin-dependent assembly and function of fibulin-1D in native locations. In contrast, constructs missing the second EGF repeat of fibulin-1D (EGF2D) assemble in ectopic locations in a hemicentin dependent manner. Constructs that contain EGF2D are cleaved into two fragments, but constructs with EGF2D missing are not, suggesting that a protease binds and/or cleaves fibulin-1D at a site that is likely within EGF2D. Together, the data suggests that EGF repeats 4 and 5 promote interaction with hemicentin while a region within EGF2D suppresses ectopic interactions with hemicentin and this suppression may be protease dependent.  相似文献   

15.
Fibulins are a family of extracellular glycoproteins associated with basement membranes and elastic fibers in vertebrates. Conservation of the fibulin-1 gene throughout metazoan evolution includes fibulin-1C and fibulin-1D alternate splice variants, although little is known about variant specific functions that would justify this striking structural conservation. We have therefore investigated the structure, localization and loss-of-function phenotype specific to both fibulin-1 variants in C. elegans. We find that fibulin-1C has specific roles during pharynx, intestine, gonad and muscle morphogenesis, being required to regulate cell shape and adhesion, whereas fibulin-1D assembles in flexible polymers that connect the pharynx and body-wall-muscle basement membranes. The assembly of fibulin-1C and fibulin-1D in multiple locations is dependent upon the presence of hemicentin, a recently described extracellular member of the immunoglobulin superfamily. We suggest that the distinct developmental roles and hemicentin-dependent assembly for fibulin-1 splice variants demonstrated here may be relevant to fibulin-1 and possibly other fibulin family members in non-nematode species.  相似文献   

16.
Fibulin-5 (also known as DANCE) is an elastin-binding protein that is thought to play a role in elastogenesis. We examined the relationship between the gene expression of fibulin-5 and the gene expression and accumulation of tropoelastin by comparing elastin-producing cells (human gingival fibroblasts) with non-elastin-producing cells (human periodontal ligament fibroblasts) by Northern blot analysis. Fibulin-5 gene induction was found only in elastin-producing cells. Induction of the fibulin-5 gene in elastin-producing cells occurred after induction of the tropoelastin gene, and the fibulin-5 level was reduced upon RNA interference-mediated down-regulation of tropoelastin. Fibulin-5 gene induction was also correlated with a rapid increase of tropoelastin accumulation within the cell layer. These results may suggest that the fibulin-5 gene induction is directly or indirectly regulated by tropoelastin gene expression and plays a role in the accumulation of elastic fibers within matrices.  相似文献   

17.
18.
19.
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-of-function experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wild-type littermates, implying that malignant progression was dependent specifically upon tumor cell-derived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected role in collagen cross-linking and tumor cell adherence to collagen.  相似文献   

20.
Fibulin-1 is a member of a growing family of proteins that includes eight members and is involved in cellular functions such as adhesion, migration and differentiation. Fibulin-1 has also been implicated in embryonic development of the heart and neural crest-derived structures. It is an integral part of the extracellular matrix (ECM) and has been shown to bind to a multitude of ECM proteins. However, fibulin-1 was first identified as a protein purified from placental extracts that binds to the cytoplasmic domain of integrin β1. Human fibulin-1 is alternatively spliced into four different isoforms namely A–D. These isoforms share a common N-terminus sequence that contains a secretion sequence but differ in their carboxy-terminal fibulin-1 module. In this report we identify a new splice variant of fibulin-1 that differs from all other fibulin-1 variants in the N-terminus sequence and has a similar carboxy-terminus sequence as fibulin-1D. This variant that we named fibulin-1D prime (fibulin-1D′) lacks a secretion sequence and the anaphlatoxin region of fibulin-1 variants. The protein has an apparent molecular weight of 70.5 kDa. Herein we show that fibulin-1D′ binds to the intracellular domain of integrin β1 as well as to integrin α5β1. The protein was localized intracellularly in CHO cells transfected with a pEF4 plasmid containing full-length coding sequence of fibulin-1D′. We also localized the protein in human placenta. We propose that the fibulin-1D′ variant might play a role in early embryo development as well as in modulating integrin β1 functions including adhesion and motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号