首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of free cytosolic Ca2+ concentration in the rod outer segments (ROS) isolated from bovine retinas was examined with the fluorescent Ca(2+)-indicating dye fluo-3. In situ calibration of cytosolic fluo-3 was done in the presence of the Ca2+ ionophore A23187 and yielded a dissociation constant of 500 nM for the Ca(2+)-fluo-3 complex. Ca2+ influx in Ca(2+)-depleted ROS was completely abolished when internal Na+ was removed suggesting that Ca2+ influx exclusively occurred via Na-Ca-K exchange. The most striking observation was that Na-Ca-K exchange could mediate a rapid increase in cytosolic free Ca2+ over the most of the usable indicating range of fluo-3 (from 10 nM to 2 microM), even when exposed to free external Ca2+ concentrations as low as 10 nM. From a comparison between changes in free Ca2+ and changes in total Ca2+, we conclude that physiologically occurring changes in cytosolic free Ca2+ are mediated by exchange fluxes less than 1% of the maximal Na-Ca-K exchange flux. The Na-Ca-K exchanger could mediate both K(+)-dependent and K(+)-independent Ca2+ influx; Li+ caused a complete inhibition of K(+)-independent Ca2+ influx, but had no effect on K(+)-dependent Ca2+ influx. We examined the complex interactions of alkali cations with Ca2+ influx and discuss the results in terms of a three-site model for the Na-Ca-K exchanger (Schnetkamp, P. P. M. and Szerencsei, R. T. (1991) J. Biol. Chem. 266, 189-197). Ca2+ competed with one Mg2+ ion or two Na+ ions for binding to a common site. High K+ concentration greatly diminished the ability of Na+ and Mg2+ to compete with Ca2+ for this common site on the exchanger protein. As a result, high internal K+ induced a conformation of the exchange protein that kinetically favoured Ca2+ extrusion.  相似文献   

2.
The properties of the Na-Ca exchanger in the plasma membrane of rod outer segments isolated from bovine retinas (ROS) were studied. Unidirectional Ca2+, Na+, and K+ fluxes were measured with radioisotopes and atomic absorption spectroscopy. We measured K+ fluxes associated with the Ca-Ca self-exchange mode of the Na-Ca exchanger to corroborate our previous conclusion that the ROS Na-Ca exchanger differs from Na-Ca exchangers in other tissues by its ability to transport K+ (Schnetkamp, P. P. M., Basu, D. K. & Szerencsei, R. T. (1989) Am. J. Physiol. 257, C153-C157). The Na-Ca-K exchanger was the only functional cation transporter in the plasma membrane of bovine ROS with an upper limit of a flux of 10(5) cations/ROS/s or a current of 0.01 pA contributed by other cation channels, pumps, or carriers; cation fluxes via the Na-Ca-K exchanger amounted to 5 x 10(6) cations/ROS/s or a current of 1 pA. Ca2+ efflux via the forward mode of the Na-Ca-K exchanger did not operate with a fixed single stoichiometry. 1) The Na/Ca coupling ratio was increased from three to four when ionophores were added that could provide electrical compensation for the inward Na-Ca exchange current. 2) The K/Ca coupling ratio could vary by at least 2-fold as a function of the external Na+ and K+ concentration. The results are interpreted in terms of a model that can account for the variable Ca/K coupling ratio: we conclude that the Ca2+ site of the exchanger can translocate independent of translocation of the K+ site, whereas translocation of the K+ site requires occupation of the Ca2+ site, but not its translocation. The results are discussed with respect to the physiological role of Na-Ca-K exchange in rod photoreceptors.  相似文献   

3.
The properties of Na-Ca-K exchange current through the plasma membrane of intact rod outer segments (ROS) isolated from bovine retinas were studied with the optical probe neutral red. Small cellular organelles such as bovine ROS do not offer an adequate collecting area to measure Na-Ca-K exchange currents with electrophysiological techniques. This study demonstrates that Na-Ca-K exchange current in bovine ROS can be measured with the dye neutral red and dual-wavelength spectrophotometry. The binding of neutral red is sensitive to transport of cations across the plasma membrane of ROS by the effect of the translocated cations on the surface potential of the intracellular disk membranes (1985. J. Membr. Biol. 88: 249-262). Electrogenic Na+ fluxes through the ROS plasma membrane were measured with a resolution of 10(5) Na+ ions/ROS per s, equivalent to a current of approximately 0.01 pA; maximal electrogenic Na-Ca-K exchange flux in bovine ROS was equivalent to a maximal exchange current of 1-2 pA. Electrogenic Na+ fluxes were identified as Na-Ca-K exchange current based on a comparison between electrogenic Na+ flux and Na(+)-stimulated Ca2+ release with respect to flux rate, Na+ dependence, and ion selectivity. Neutral red monitored the net entry of a single positive charge carried by Na+ for each Ca2+ ion released (i.e., monitored the Na-Ca-K exchange current). Na-Ca-K exchange in the plasma membrane of bovine ROS had the following properties: (a) Inward Na-Ca-K exchange current required internal Ca2+ (half-maximal stimulation at a free Ca2+ concentration of 0.9 microM), whereas outward Na-Ca-K exchange current required both external Ca2+ (half-maximal stimulation at a free Ca2+ concentration of 1.1 microM) and external K+. (b) Inward Na-Ca-K exchange current depended in a sigmoidal manner on the external Na+ concentration, identical to Na(+)-stimulated Ca2+ release measured with Ca(2+)-indicating dyes. (c) The neutral red method was modified to measure Ca(2+)-activated K+ fluxes (half-maximal stimulation at 2.7 microM free Ca2+) via the Na-Ca-K exchanger in support of the notion that the rod Na-Ca exchanger is in effect a Na-Ca-K exchanger. (d) Competitive interactions between Ca2+ and Na+ ions on the exchanger protein are described.  相似文献   

4.
Two types of Na+/Ca2+-exchangers have been characterized in the literature: The first is the cardiac, skeletal muscle and brain type, which exchanges 1 Ca2+ for 3 Na+, the second, found in retinal photosensor cells, transports 1 Ca2+ and 1 K+ in exchange for 4 Na+. The present work describes the properties of chimeric constructs of the two exchanger types. Ca2+ gel overlay experiments have identified a high affinity (Kd in the 1 microM range) Ca2+-binding domain between Glu601 and Asp733 in the main cytosolic loop of the retinal protein, just after transmembrane domain 5. Insertion of the retinal Ca2+-binding domain in the cytosolic loop of the cardiac exchanger conferred K+-dependence to the Ca2+ uptake activity of the chimeric constructs expressed in HeLa cells. The apparent Km of the K+ effect was about 1 mM. Experiments with C-terminally truncated versions of the retinal insert indicated that the sequence between Leu643 and Asp733 was critical in mediating K+ sensitivity of the recombinant chimeras. Thus, the high affinity Ca2+-binding domain in the main cytosolic loop of the retinal exchanger may regulate the activity of the retinal protein by binding Ca2+, and by conferring to it K+ sensitivity.  相似文献   

5.
Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor adaptation, synaptic plasticity and skin pigmentation. The CCX (Ca2+/cation exchanger) branch has only one mammalian member, NCKX6 or NCLX (Na+/Ca2+-Li+ exchanger), whose physiological function remains unclear, despite a broad pattern of expression.  相似文献   

6.
The objective of this study was to assess the contribution of Na+-Ca2+ exchange activity to Ca2+ efflux at various cytosolic Ca2+ concentrations ([Ca2+]i) in transfected Chinese hamster cells expressing the bovine cardiac Na+-Ca2+ exchanger. Ionomycin was added to fura-2 loaded cells and the resulting [Ca2+]i transient was monitored in Ca2+-free media with or without extracellular Na+. The presence of Na+ reduced both the amplitude and duration of the [Ca2+]i transient. Na+ had similar effects when the peak of the [Ca2+]i transient was buffered to 100 nM by cytosolic EGTA, or when Ca2+ was slowly released from internal stores with thapsigargin. Ca2+ efflux following ionomycin addition was directly measured with extracellular fura-2 and followed a biphasic time course (t(1/2) approximately = 10 s and 90s). The proportion of total efflux owing to the rapid phase was increased by Na+ and reduced by EGTA-loading. Na+ accelerated the initial rate of Ca2+ efflux by 65% in unloaded cells but only by 16% in EGTA-loaded cells. In both cases, the stimulation by Na+ was less than expected, given the pronounced effects of Na+ on the [Ca2+]i transient. We conclude that the exchanger contributes importantly to Ca2+ efflux activity at all [Ca2+]i values above 40 nM. We also suggest that Ca2+ efflux pathways may involve non-cytosolic or local routes of Ca2+ traffic.  相似文献   

7.
Cardiomyocytes derived from mouse embryonic stem (mES) cells have been demonstrated to exhibit a time-dependent expression of ion channels and signal transduction pathways in electrophysiological studies. However, ion transporters, such as Na+/K+ ATPase (Na+ pump) or Na+/Ca2+ exchanger, which play crucial roles for cardiac function, have not been well studied in this system. In this study, we investigated the functional expression of Na+/K+ ATPase and Na+/Ca2+ exchanger in mES cells during in vitro differentiation into cardiomyocytes, as well as the functional coupling between the two transporters. By measuring [Na+]i and Na+ pump current (Ip), it was shown that an ouabain-high sensitive Na+/K+ ATPase was expressed functionally in undifferentiated mES cells and these activities increased during a time course of differentiation. Using RT-PCR, the expression of mRNA for alpha1-subunit and alpha3-subunit of the Na+/K+ ATPase could be detected in both undifferentiated mES cells and derived cardiomyocytes. In contrast alpha2-subunit mRNA could be detected only in derived cardiomyocytes but not in undifferentiated mES cells. mRNA for the Na+/Ca2+ exchanger 1 isoform (NCX1) could be detected in undifferentiated mES cells and its expression levels seemed to gradually increase throughout the differentiation accompanied by increasing its Ca2+ extrusion function. At the middle stages of differentiation (after 10-day induction), more than 75% derived cardiomyocytes exhibited [Ca2+]i oscillations by blocking of Na+/K+ ATPase, suggesting the functional coupling with Na+/Ca2+ exchanger. From these results and RT-PCR analysis, we conclude that alpha2-subunit Na+/K+ ATPase mainly contributes to establish the functional coupling with NCX1 at the middle stages of differentiation of cardiomyocytes.  相似文献   

8.
The plasma membrane Na+/Ca2+ exchanger (NCX) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes. Binding of Na+ and Ca2+ ions to its large cytosolic loop regulates ion transport of the exchanger. We determined the solution structures of two Ca2+ binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD), form the regulatory exchanger loop. CBD1 and CBD2 are very similar in the Ca2+ bound state and describe the Calx-beta motif. Strikingly, in the absence of Ca2+, the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a 7-fold higher affinity for Ca2+, this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX.  相似文献   

9.
Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai-dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 mM, the ratio of the Cao-dependent Na+ efflux to the Nai-dependent Ca2+ influx was 2.8-3.2:1 (mean = 3.1:1); this directly demonstrates that the stoichiometry (coupling ratio) of the Na/Ca exchange is 3:1. These observations on the coupling ratio and kinetics of the Na/Ca exchanger imply that in resting cells the exchanger turns over at a low rate because of the low [Ca2+]i; much of the Ca2+ extrusion at rest (approximately 1 pmol/cm2.s) is thus mediated by an ATP-driven Ca2+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The transport stoichiometry is an essential property of antiporter and symporter transport proteins. In this study, we determined the transport stoichiometry of the retinal cone potassium-dependent Na/Ca exchanger (NCKX) expressed in sodium-loaded cultured insect cells. The Na/Ca and Rb/Ca coupling ratios were obtained by direct measurements of the levels of (86)Rb and (45)Ca uptake and sodium release associated with reverse Na/Ca exchange. Rb/Ca coupling ratios of 0.98 [standard deviation (SD) of 0.12, 15 observations] and 0.92 (SD of 0.12, 13 observations) were obtained for the chicken and human retinal cone NCKX, respectively. Na/Ca coupling ratios of 4.11 (SD of 0.24, 10 observations) and 3.98 (SD of 0.34, 15 observations) were obtained for the chicken and human retinal cone NCKX, respectively, whereas a lower average coupling ratio of 3.11 (SD of 0.34, 10 observations) was obtained with cells expressing the bovine Na/Ca exchanger (NCX1). These results are consistent with a 4Na/1Ca + 1K stoichiometry for retinal cone NCKX. High Five cells expressing full-length dolphin rod NCKX, Caenorhabditis elegans NCKX, or bovine rod NCKX from which the two large hydrophilic loops were removed all showed a significant calcium-dependent (86)Rb uptake, whereas no calcium-dependent (86)Rb uptake was observed in cells expressing bovine NCX1. The calcium dependence of (45)Ca uptake yielded values between 1 and 2.5 microM for the external calcium dissociation constant of the different NCKX proteins studied here.  相似文献   

11.
There is increasing evidence that mitochondria play an important role in the control of cytosolic Ca2+ signaling. We show here that the main mitochondrial Ca2+-exit pathway, the mitochondrial Na+/Ca2+ exchanger, controls the pattern of cytosolic Ca2+ oscillations in non-excitable cells. In HeLa cells, the inhibitor of the mitochondrial Na+/Ca2+ exchanger CGP37157 changed the pattern of the oscillations induced by histamine from a high-frequency irregular one to a lower frequency baseline spike type, surprisingly with little changes in the average Ca2+ values of a large cell population. In human fibroblasts, CGP37157 increased the frequency of the baseline oscillations in cells having spontaneous activity and induced the generation of oscillations in cells without spontaneous activity. This effect was dose-dependent, disappeared when the inhibitor was washed out and was not mimicked by mitochondrial depolarization. CGP37157 increased mitochondrial [Ca2+] and ATP production in histamine-stimulated HeLa cells, but the effect on ATP production was only transient. CGP37157 also activated histamine-induced Ca2+ release from the endoplasmic reticulum and increased the size of the cytosolic Ca2+ peak induced by histamine in HeLa cells. Our results suggest that the mitochondrial Na+/Ca2+ exchanger directly modulates inositol 1,4,5-trisphosphate-induced Ca2+ release and in that way controls cytosolic Ca2+ oscillations.  相似文献   

12.
Purification of the bovine rod outer segment Na+/Ca2+ exchanger   总被引:1,自引:0,他引:1  
Optimal conditions for solubilization and stabilization of the Na+/Ca2+ exchanger from rod outer segments were examined. The exchanger was found to be most stable at low detergent concentrations (7.5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), greater than or equal to 100 mM NaCl, pH 7.0-7.5, and with 0.1% added soybean asolectin. The sulfhydryl-modifying reagent, dithiothreitol, caused a loss of exchanger activity and was omitted throughout the purification procedure. These conditions were used to purify the Na+/Ca2+ exchanger from rod outer segments by a combination of selective solubilization, ion exchange, and wheat germ agglutinin chromatography. The procedure achieves a 336-fold increase in exchanger specific activity. The presence of exchanger activity most closely correlates with a polypeptide of molecular mass 215-kDa. Exchanger activity in both the crude rod outer segments and the purified exchanger is specifically dependent upon the presence of K+ in the assay medium; neither choline nor Li+ can substitute for K+.  相似文献   

13.
Two recent studies reported that Na-Ca exchange in the outer segments of tiger salamander rod photoreceptors (Cervetto, L., Lagnado, L., Perry, R. J., Robinson, D. W., and McNaughton, P. A. (1989) Nature 337, 740-743) and of bovine rod photoreceptors (Schnetkamp, P. P. M., Basu, D. K., and Szerencsei, R. T. (1989) Am. J. Physiol. 257, C153-157) requires and transports K+ in a 4Na/(1Ca+1K) stoichiometry. In this study, we have examined the effects of K+ ions and membrane potential on the kinetics of Na-Ca and Ca-Ca exchange in rod outer segments isolated from bovine retinas. The objective was to establish the ion selectivity and voltage dependence of the different cation binding sites on the Na-Ca-K exchange protein. Potassium ions activated Na-Ca exchange when present on the Ca2+ side, although the extent of activation decreased with decreasing Na+ concentration. Potassium ions inhibited Na-Ca exchange when present on the Na+ side; inhibition arose from competition between Na+ and K+ for a common single cation-binding site. Activation of Na-Ca exchange by K+ displayed a different ion selectivity than that observed for inhibition of Na-Ca exchange by K+. The results are interpreted in terms of a three-site model for the rod Na-Ca-K exchanger. The rate of forward Na-Ca exchange decreased by 1.75-fold for a 60 mV depolarization of the plasma membrane but only at lower Na+ concentrations. The rate of Ca-Ca exchange was not affected by changes in membrane potential.  相似文献   

14.
The Ca2+ dependency of NK cell-mediated and cytolysin-mediated cytolysis may be related to increases in target cell intracellular Ca2+. In a previous study we hypothesized that the Na+/Ca2+ exchanger can act as a counter-lytic mechanism by regulating the damaging increases in intracellular free calcium ([Ca2+]i) produced by cytolysin. We found that conditions said to inhibit Ca2+ extrusion by Na+/Ca2+ exchange, namely low extracellular Na+ or the presence of certain amiloride analogs which block Na+/Ca2+ exchange, enhanced the cytolysin-mediated cytolysis of YAC-1 lymphoma cells. In the present work we have confirmed the above hypothesis by measuring the [Ca2+]i of fura-2- or aequorin-labeled YAC-1 cells treated with cytolysin and low Na+ medium or amiloride analogs. YAC-1 cells appear to have a Na+/Ca2+ exchange system: low Na+ medium caused gradual increases in [Ca2+]i, and this effect was reversed in Na(+)-replete medium. Cytolysin purified from NK cell granules caused rapid dose-dependent increases in [Ca2+]i, and low Na+ medium enhanced these cytolysin-mediated increases. The Na+/Ca2+ exchange system appeared to be more active in cytolysin-challenged cells: amiloride analogs, which inhibit Na+/Ca2+ exchange in other systems, acted synergistically with cytolysin to cause large increases in [Ca2+]i, but had little effect, if any, on their own. 5-(N-4-Chlorobenzyl)-2',4'-dimethylbenzamil, the amiloride analog which has the greatest specificity for the Na+/Ca2+ exchanger and which previously was found to be the most potent enhancer of cytolysin-mediated cytolysis, was the most potent enhancer of cytolysin-mediated increases in [Ca2+]i. The above results suggest that Na+/Ca2+ exchange may be one of the target cell mechanisms of resistance to cytolysin and NK cell-mediated cytolysis.  相似文献   

15.
We previously observed Ca2+ release from intracellular Ca2+ stores caused by reduction in extracellular Na+ concentration ([Na+]o). The purpose of this study was to determine whether lowering [Na+]o can elicit Ca2+ release from Ca2+ stores via the Na+/Ca2+ exchanger and to elucidate the mechanisms related to the Ca2+ release pathway in cultured longitudinal smooth muscle cells obtained from guinea pig ileum. Low [Na+]o-induced Ca2+ release was inhibited by antisense oligodeoxynucleotides for Na+/Ca2+ exchanger type 1 (anti-NCX). Application of anti-NCX to cells attenuated both the number of Ca2+ responding cells and the expression of the exchanger. Moreover, microinjection of heparin, a blocker of inositol 1,4,5-trisphosphate (IP3) receptors, into the cells inhibited low [Na+]o-induced Ca2+ release. These findings suggest that low [Na+]o-induced Ca2+ release occurs through an IP3-induced Ca2+ release mechanism due to changes in the Ca2+ flux regulated by the Na+/Ca2+ exchanger.  相似文献   

16.
BACKGROUND/AIM: The present study aimed at elucidating the mechanism(s) of serotonin (5-HT) efflux induced by thapsigargin from human platelets in the absence of extra-cellular Ca2+. METHODS: Efflux of pre-loaded radiolabeled serotonin was generally determined by filtration techniques. Cytosolic concentrations of Ca2+, Na+ and H+ were measured with appropriate fluorescent probes. RESULTS: 5-HT efflux from control or reserpine-treated platelets--where reserpine prevents 5-HT transport into the dense granules--was proportional to thapsigargin evoked cytosolic [Ca2+]c increase. Accordingly factors as prostacyclin, aspirin and calyculin which reduced [Ca2+]c-increase also inhibited the 5-HT efflux. Thapsigargin, which also caused a remarkable increase in cytosolic [Na+]c, promoted less 5-HT release, in parallel to lower [Na+]c and [Ca2+]c increase, when added to platelet suspensions containing low [Na+]. The Na+/H+ exchanger monensin increased the [Na+]c and induced 5-HT efflux without affecting the Ca2+ level. The 5-HT efflux induced by both [Ca2+] or [Na+]c increase did not depend on pH or membrane potential changes, whereas it decreased in the absence of extra-cellular K+, and increased in the absence of Cl- or Na+. CONCLUSION: Increases in [Ca2+]c and [Na+]c independently induce serotonin efflux through the outward directed plasma membrane serotonin transporter SERT. This event might be physiologically important at the level of capillaries or narrowed arteries where platelets are subjected to high shear stress which causes [Ca2+]c increase followed by 5-HT release which might exert vasodilatation.  相似文献   

17.
The effect of cAMP on active Ca2+ extrusion across the plasma membrane of intact human platelets was studied using quin2, a fluorimetric indicator of free Ca2+ in the cytoplasmic compartment ([Ca2+]cyt). Elevations of cAMP were achieved by incubation with dibutyryl-cAMP or by forskolin, which was found to selectively elevate cAMP without affecting cGMP levels. Progress curves of Ca2+ extrusion from quin2-overloaded platelets were measured. The rate vs. [Ca2+]cyt characteristic was calculated as previously described (Johansson, J.S. and Haynes, D.H. (1988) J. Membr. Biol. 104, 147-163). Forskolin, at a maximally effective concentration of 10 microM, was shown to stimulate Ca2+ extrusion by increasing by a factor of 1.6 +/- 0.5 the Vm of a saturable component, previously identified with a Ca(2+)-Mg(2+)-ATPase located in the plasma membrane. Neither the Km (80 nM) or Hill coefficient (1.7 +/- 0.3) of the Ca(2+)-ATPase was affected. Forskolin had no effect on the linear, non-saturable component of extrusion (previously identified with a Na+/Ca2+ exchanger) over the [Ca2+]cyt range examined (50-1500 nM). Dibutyryl-cAMP (Bt2-cAMP, 1 mM) stimulated the Ca(2+)-Mg(2+)-ATPase component of Ca2+ extrusion by a factor of 2.0 +/- 0.6. Separate experiments showed that 10 microM forskolin reduces the resting [Ca2+]cyt from 112 nM to 96 nM. Mathematical analysis showed that this can be accounted for by the above-mentioned increase in Vm of the pump, countered by a 37-74% increase in the rate constant for passive Ca2+ leakage across the plasma membrane. The results suggest two mechanisms by which prostacyclin-induced elevation of cAMP inhibits platelet aggregation: (a) lowering of resting [Ca2+]cyt and (b) increasing the rate of Ca2+ extrusion after the initial influx or triggered release event.  相似文献   

18.
L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.  相似文献   

19.
Altered fluxes of Ca2+ across the chondrocyte membrane have been proposed as one pathway by which mechanical load can modulate cartilage turnover. In many cells, Na+/Ca2+ exchange (NCX) plays a key role in Ca2+ homeostasis, and recent studies have suggested it is operative in articular chondrocytes. In this study, an electrophysiological characterisation of NCX in articular bovine chondrocytes has been performed, using the whole-cell patch clamp technique, and the effects of inhibitors and the transmembrane electrochemical gradients of Na+ and Ca2+ on NCX function have been assessed. A Ni2+-sensitive current (I(NCX)) which exhibited outward rectification, was elicited by a voltage ramp protocol. The current was also attenuated by the NCX inhibitors benzamil and KBR7943, without significant differences between the effect of these two compounds upon outward and inward currents. The Ni2+-sensitive current was modulated by changes in extracellular and pipette Na+ and Ca2+ in a manner characteristic of I(NCX). Measured values for the reversal potential differed significantly from those predicted for an exchanger stoichiometry of 3Na+ : 1Ca2+, implying that accumulation of intracellular Ca2+ (from influx or release from stores) or more than one transport mode is occurring. These results demonstrate the operation of NCX in articular chondrocytes and suggest that changes in its turnover rate, as might occur in response to mechanical load, may modify cell composition and thereby dictate cartilage turnover.  相似文献   

20.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号