首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
2.
Acetylcholinesterase (AChE) anchors onto cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric form in vertebrate brain. The assembly of AChE tetramer with PRiMA requires the C-terminal "t-peptide" in AChE catalytic subunit (AChE(T)). Although mature AChE is well known N-glycosylated, the role of glycosylation in forming the physiologically active PRiMA-linked AChE tetramer has not been studied. Here, several lines of evidence indicate that the N-linked glycosylation of AChE(T) plays a major role for acquisition of AChE full enzymatic activity but does not affect its oligomerization. The expression of the AChE(T) mutant, in which all N-glycosylation sites were deleted, together with PRiMA in HEK293T cells produced a glycan-depleted PRiMA-linked AChE tetramer but with a much higher K(m) value as compared with the wild type. This glycan-depleted enzyme was assembled in endoplasmic reticulum but was not transported to Golgi apparatus or plasma membrane.  相似文献   

3.
4.
5.
6.
The membrane-bound form of acetylcholinesterase (AChE) constitutes the major component of this enzyme in the mammalian brain. These molecules are hetero-oligomers, composed of four AChE catalytic subunits of type T (AChE(T)), associated with a transmembrane protein of type 1, called PRiMA (proline-rich membrane anchor). PRiMA consists of a signal peptide, an extracellular domain that contains a proline-rich motif (14 prolines with an intervening leucine, P4LP10), a transmembrane domain, and a cytoplasmic domain. Expression of AChE(T) subunits in transfected COS cells with a truncated PRiMA, without its transmembrane and cytoplasmic domains (P(stp54) mutant), produced secreted heteromeric complexes (T4-P(stp54)), instead of membrane-bound tetramers. In this study, we used a series of deletions and point mutations to analyze the interaction between the extracellular domain of PRiMA and AChE(T) subunits. We confirmed the importance of the polyproline stretches and defined a peptidic motif (RP4LP10RL), which induces the assembly and secretion of a heteromeric complex with four AChE(T) subunits, nearly as efficiently as the entire extracellular domain of PRiMA. It is noteworthy that deletion of the N-terminal segment preceding the prolines had little effect. Interestingly, short PRiMA mutants, truncated within the proline-rich motif, reduced both cellular and secreted AChE activity, suggesting that their interaction with AChE(T) subunits induces their intracellular degradation.  相似文献   

7.
Acetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChET and BChET with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (QN-GPI). Using AChE and BChE mutants, we showed that AChE-BChE hybrids linked with PRiMA or QN-GPI always consist of AChET and BChET homodimers. The dimer formation of AChET and BChET depends on the catalytic domains, and the assembly of tetramers with a proline-rich attachment domain-containing protein requires the presence of C-terminal “t-peptides” in cholinesterase subunits. Our results indicate that PRiMA- or ColQ-linked cholinesterase tetramers are assembled from AChET or BChET homodimers. Moreover, the PRiMA-linked AChE-BChE hybrids occur naturally in chicken brain, and their expression increases during development, suggesting that they might play a role in cholinergic neurotransmission.  相似文献   

8.
Acetylcholinesterase tetramers are inserted in the basal lamina of neuromuscular junctions or anchored in cell membranes through the interaction of four C-terminal t peptides with proline-rich attachment domains (PRADs) of cholinesterase-associated collagen Q (ColQ) or of the transmembrane protein PRiMA (proline-rich membrane anchor). ColQ and PRiMA differ in the length of their proline-rich motifs (10 and 15 residues, respectively). ColQ has two cysteines upstream of the PRAD, which are disulfide-linked to two AChE(T) subunits ("heavy" dimer), and the other two subunits are disulfide-linked together ("light" dimer). In contrast, PRiMA has four cysteines upstream of the PRAD. We examined whether these cysteines could be linked to AChE(T) subunits in complexes formed with PRiMA in transfected COS cells and in the mammalian brain. For comparison, we studied complexes formed with N-terminal fragments of ColQ, N-terminal fragments of PRiMA, and chimeras in which the upstream regions containing the cysteines were exchanged. We also compared the effect of mutations in the t peptides on their association with the two PRADs. We report that the two PRADs differ in their interaction with AChE(T) subunits; in complexes formed with the PRAD of PRiMA, we observed light dimers, but very few heavy dimers, even though such dimers were formed with the PQ chimera in which the N-terminal region of PRiMA was associated with the PRAD of ColQ. Complexes with PQ or with PRiMA contained heavy components, which migrated abnormally in SDS-PAGE but probably resulted from disulfide bonding of four AChE(T) subunits with the four upstream cysteines of the associated protein.  相似文献   

9.
PRiMA: the membrane anchor of acetylcholinesterase in the brain.   总被引:14,自引:0,他引:14  
As a tetramer, acetylcholinesterase (AChE) is anchored to the basal lamina of the neuromuscular junction and to the membrane of neuronal synapses. We have previously shown that collagen Q (ColQ) anchors AChE at the neuromuscular junction. We have now cloned the gene PRiMA (proline-rich membrane anchor) encoding the AChE anchor in mammalian brain. We show that PRiMA is able to organize AChE into tetramers and to anchor them at the surface of transfected cells. Furthermore, we demonstrate that AChE is actually anchored in neural cell membranes through its interaction with PRiMA. Finally, we propose that only PRiMA anchors AChE in mammalian brain and muscle cell membranes.  相似文献   

10.
When a clonal line of rat pheochromocytoma (PC12) was exposed to beta-nerve growth factor (beta NGF), N6, O2-dibutyryl adenosine 3':5' cyclic monophosphate (Bt2cAMP), or a combination of the two, 10, 26, or 70% of the cell clumps, respectively, displayed neurites after 1.d. Increases in the cellular RNA concentration were also found to be additive or greater when both agents were present. Neurites induced by Bt2cAMP alone were not maintained after replacement with beta NGF. The degree of potentiated neurite outgrowth was a function of the time of simultaneous exposure to both agents. The initiation of neurite outgrowth in the presence of Bt2cAMP was independent of RNA synthesis, in contrast to that induced by beta NGF alone. We conclude that beta NGF-induced initiation of morphological differentiation of these cells is not mediated by a cAMP-dependent mechanism. Consideration of Bt2cAMP effects upon other cell lines suggest that Bt2cAMP causes a rapid, but unstable, reorganization of the PC12 cytoskeleton, resulting in the initiation of neurite outgrowth from these cells. In contrast, beta NGF alone achieves a more stable cytoskeleton reorganization by an RNA synthesis-dependent mechanism.  相似文献   

11.
The expression of acetylcholinesterase (AChE) is markedly increased during myogenic differentiation of C2C12 myoblasts to myotubes; the expression is mediated by intrinsic factor(s) during muscle differentiation. In order to analyze the molecular mechanisms regulating AChE expression during myogenic differentiation, a approximately 2.2-kb human AChE promoter tagged with a luciferase reporter gene, namely pAChE-Luc, was stably transfected into C2C12 cells. The profile of promoter-driven luciferase activity during myogenic differentiation of C2C12 myotubes was found to be similar to that of endogenous expression of AChE catalytic subunit. The increase of AChE expression was reciprocally regulated by a cAMP-dependent signaling pathway. The level of intracellular cAMP, the activity of cAMP-dependent protein kinase, the phosphorylation of cAMP-responsive element binding protein and the activity of cAMP- responsive element (CRE) were down-regulated during the myotube formation. Mutating the CRE site of human AChE promoter altered the original myogenic profile of the promoter activity and its suppressive response to cAMP. In addition, the suppressive effect of the CRE site is dependent on its location on the promoter. Therefore, our results suggest that a cAMP-dependent signaling pathway serves as a suppressive element in regulating the expression of AChE during early myogenesis.  相似文献   

12.
Massoulié J 《Neuro-Signals》2002,11(3):130-143
Vertebrates possess two cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which both hydrolyze acetylcholine, but differ in their specificity towards other substrates, and in their sensitivity to inhibitors. In mammals, the AChE gene produces three types of coding regions through the choice of 3' splice acceptor sites, generating proteins which possess the same catalytic domain, associated with distinct C-terminal peptides. AChE subunits of type R ('readthrough') produce soluble monomers; they are expressed during development and induced by stress in the mouse brain. AChE subunits of type H ('hydrophobic') produce GPI-anchored dimers, but also secreted molecules; they are mostly expressed in blood cells. Subunits of type T ('tailed') exist for both AChE and BChE. They represent the enzyme forms expressed in brain and muscle. These subunits generate a variety of quaternary structures, including homomeric oligomers (monomers, dimers, tetramers), as well as hetero-oligomeric assemblies with anchoring proteins, ColQ and PRiMA. Mutations in the four-helix bundle (FHB) zone of the catalytic domain indicate that subunits of type H and T use the same interaction for dimerization. On the other hand, the C-terminal T peptide is necessary for tetramerization. Four T peptides, organized as amphiphilic alpha helices, can assemble around proline-rich motifs of ColQ or PRiMA. The association of AChE(T) or BChE subunits with ColQ produces collagen-tailed molecules, which are inserted in the extracellular matrix, e.g. in the basal lamina of neuromuscular junctions. Their association with PRiMA produces membrane-bound tetramers which constitute the predominant form of cholinesterases in the mammalian brain; in muscles, the level of PRiMA-anchored tetramers is regulated by exercise, but their functional significance remains unknown. In brain and muscles, the hydrolysis of acetylcholine by cholinesterases, in different contexts, and their possible noncatalytic functions clearly depend on their localization by ColQ or PRiMA.  相似文献   

13.
14.
15.
J. Neurochem. (2012) 122, 1065-1080. ABSTRACT: Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.  相似文献   

16.
Activation of Gz attenuates Rap1-mediated differentiation of PC12 cells   总被引:3,自引:0,他引:3  
We previously identified a specific activation-dependent interaction between the alpha subunit of the heterotrimeric G protein, G(z), and a regulator of Rap1 signaling, Rap1GAP (Meng, J., Glick, J. L., Polakis, P., and Casey, P. J. (1999) J. Biol. Chem. 274, 36663-36669). We now demonstrate that activated forms of Galpha(z) are able to recruit Rap1GAP from a cytosolic location to the membrane. Using PC12 cells as a model for neuronal differentiation, the influence of G(z) activation on Rap1-mediated cell differentiation was examined. Introduction of constitutively-activated Galpha(z) into PC12 cells markedly attenuated the differentiation process of these cells induced by a cAMP analogue. Treatment of PC12 cells expressing wild type Galpha(z) with a specific agonist to the alpha(2A)-adrenergic receptor also attenuated cAMP-induced PC12 cell differentiation, demonstrating that receptor-mediated activation of G(z) was also effective in this regard. Furthermore, activation of G(z) decreased the ability of the cAMP analogue to trigger both Rap1 and extracellular-regulated kinase (ERK) activation. Differentiation of PC12 cells induced by nerve growth factor (NGF) is also thought to be a Rap1-mediated process, and G(z) activation was found to attenuate this process as well. Rap1 activation, ERK phosphorylation, and PC12 cell differentation induced by NGF treatment were all significantly attenuated by either transfection of constitutively activated Galpha(z) or receptor-mediated G(z) activation. Based on these findings, a model is proposed in which activation of G(z) results in recruitment of Rap1GAP to the membrane where it can effectively down-regulate Rap1 signaling. The implications of these findings in regard to a possible role for G(z) in neuronal development are discussed.  相似文献   

17.
We have isolated and partially characterized three mutants of the pheochromocytoma line PC12 by using dibutyryl cyclic AMP (cAMP) as a selective agent. Each of these variants, A126-1B2, A208-4, and A208-7, was resistant to both dibutyryl cAMP and cholera toxin when cell growth was measured. In comparison to wild-type PC12 cells, each of these mutants was deficient in the ability to induce ornithine decarboxylase (ODC) in response to agents that act via a cAMP-dependent pathway. In contrast, each of these mutants induced ODC in response to nerve growth factor. To understand the nature of the mutations, the cAMP-dependent protein kinases of the wild type and of each of these mutants were studied by measuring both histone kinase activity and 8-N3-[32P]cAMP labeling. Wild-type PC12 cells contained both cAMP-dependent protein kinase type I (cAMP-PKI) and cAMP-dependent protein kinase type II (cAMP-PKII). Regulatory subunits were detected in both soluble and particulate fractions. The mutant A126-1B2 contained near wild-type PC12 levels of cAMP-PKI but greatly reduced levels of cAMP-PKII. Furthermore, when compared with wild-type PC12 cells, this cell line had an altered distribution in ion-exchange chromatography of regulatory subunits of cAMP-PKI and cAMP-PKII. The mutant A208-4 demonstrated wild-type-level binding of 8-N3-[32P]cAMP to both type I and type II regulatory subunits, but only half the wild-type level of type II catalytic activity. The mutant A208-7 had type I and type II catalytic activities equivalent to those in wild-type cells. However, the regulatory subunit of cAMP-PKI occurring in A208-7 demonstrated decreased levels of binding 8-N3-[32P]cAMP in comparison with the wild type. Furthermore, all mutants were defective in their abilities to bind 8-N3-[32P]cAMP to the type II regulatory protein in the particulate fraction. Thus, cAMP-PK was altered in each of these mutants. We conclude that both cAMP-PKI and cAMP-PKII are apparently required to induce ODC in response to increases in cAMP. Finally, since all three mutants induced ODC in response to nerve growth factor, the nerve growth factor-dependent induction of OCD was not mediated by an increase in cAMP that led to an activation of cAMP-PK. These mutants will be useful in the elucidation of the many functions controlled by cAMP and nerve growth factor.  相似文献   

18.
Treatment of mouse lymphoma S49 cells with D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, depleted cellular polyamine levels and stopped cell growth. The cells were arrested predominantly in G1. Thus, polyamine depletion may lead to a regulatory growth arrest in S49 cells. We tested two hypotheses regarding the relationship of growth arrest mediated by polyamine limitation to that mediated by cyclic AMP (cAMP). The hypothesis that cAMP-induced arrest results from polyamine depletion is not tenable, because the arrest could not be reversed by addition of exogenous polyamines, and because cellular polyamine levels do not drop in dibuturyl cyclic AMP (Bt2cAMP)-arrested cells. The hypothesis that polyamine-mediated growth arrest is effected via modulation of cAMP levels or cAMP-dependent protein kinase activity was also shown to be incorrect, because a S49 variant deficient in cAMP-dependent protein kinase was arrested by DFMO. The activities of the polyamine-synthesizing enzymes ornithine decarboxylase (ODC) and S-adenosyl methionine decarboxylase (SAMD) are both reduced in Bt2cAMP-treated cells to about 10% of that in control populations, as shown previously. DFMO diminishes ODC activity and augments SAMD activity in both untreated and Bt2cAMP-treated cells, leading to polyamine depletion in both cases.  相似文献   

19.
The early stages of Alzheimer's disease are characterized by cholinergic deficits and the preservation of cholinergic function through the use of acetylcholinesterase inhibitors is the basis for current treatments of the disease. Understanding the causes for the loss of basal forebrain cholinergic neurons in neurodegeneration is therefore a key to developing new therapeutics. In this study, we review novel aspects of cholinesterase membrane localization in brain and propose mechanisms for its lipid domain targeting, secretion and protein-protein interactions. In erythrocytes, acetylcholinesterase (AChE) is localized to lipid rafts through a GPI anchor. However, the main splice form of AChE in brain lacks a transmembrane peptide anchor region and is bound to the 'proline-rich membrane anchor', PRiMA, in lipid rafts. Furthermore, AChE is secreted ('shed') from membranes and this shedding is stimulated by cholinergic agonists. Immunocytochemical studies on rat brain have shown that membrane-associated PRiMA immunofluorescence is located selectively at cholinergic neurons of the basal forebrain and striatum. A strong association of AChE with the membrane via PRiMA seems therefore to be a specific requirement of forebrain cholinergic neurons. α7 nicotinic acetylcholine receptors are also associated with lipid rafts where they undergo rapid internalisation on stimulation. We are currently probing the mechanism(s) of AChE shedding, and whether this process and its apparent association with α7 nicotinic acetylcholine receptors and metabolism of the Alzheimer's amyloid precursor protein is determined by its association with lipid raft domains either in normal or pathological situations.  相似文献   

20.
We have previously shown that Gq protein-coupled receptor (GqPCR) agonists stimulate epidermal growth factor receptor (EGFr) transactivation and activation of mitogen-activated protein kinases (MAPK) in colonic epithelial cells. This constitutes a mechanism by which Cl- secretory responses to GqPCR agonists are limited. In the present study we examined a possible role for the EGFr in regulating Cl- secretion stimulated by agonists that act through GsPCRs. All experiments were performed using monolayers of T84 colonic epithelial cells grown on permeable supports. Protein phosphorylation and protein-protein interactions were analyzed by immunoprecipitation and Western blotting. Cl- secretion was measured as changes in short-circuit current (DeltaIsc) across voltage-clamped T84 cells. The GsPCR agonist, vasoactive intestinal polypeptide (VIP; 100 nM), rapidly stimulated EGFr phosphorylation in T84 cells. This effect was mimicked by a cell-permeant analog of cAMP, Bt2cAMP/AM (3 microM), and was attenuated by the protein kinase A (PKA) inhibitor, H-89 (20 microM). The EGFr inhibitor, tyrphostin AG1478 (1 microM), inhibited both Bt2cAMP/AM-stimulated EGFr phosphorylation and Isc responses. VIP and Bt2cAMP/AM both stimulated ERK MAPK phosphorylation and recruitment of the p85 subunit of phosphatidylinositol 3-kinase (PI3K) to the EGFr in a tyrphostin AG1478-sensitive manner. The PI3K inhibitor, wortmannin (50 nM), but not the ERK inhibitor, PD 98059 (20 microM), attenuated Bt2cAMP/AM-stimulated secretory responses. We conclude that GsPCR agonists rapidly transactivate the EGFr in T84 cells by a signaling pathway involving cAMP and PKA. Through a mechanism that likely involves PI3K, transactivation of the EGFr is required for the full expression of cAMP-dependent Cl- secretory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号