首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The linear plasmid SCP1 is integrated into the central region of the chromosome of Streptomyces coelicolor A3(2). The integrated structures of SCP1 in two bidirectional donor strains, 2612 and A634, were analyzed by cloning and sequencing of the junctions between the SCP1 DNA and the chromosomal DNA. In the NF (normal fertility) strain 2612, SCP1 is integrated in a right-handed direction into ORF-X at the left end of the IS cluster in AseI fragment E. An almost intact left end of SCP1 is retained, while the right terminal inverted repeat (TIR-R) of SCP1 and a 33-kb chromosomal DNA segment including the IS cluster are deleted. In the NF-like strain A634, SCPI is also integrated into AseI fragment E in a left-handed direction. The left junction is composed of IS466 with complete deletion of TIR-R of SCP1, and the right junction is located at the left end of IS468A* with half of TIR-L being deleted. During the integration event, a 5.4-kb chromosomal DNA segment including IS468A, IS468B, IS469 and IS466A was duplicated so that this sequence is now present on both sides of SCP1. Since 2612 and A634 exhibit a similar bidirectional gradient of gene transfer, it is surprising that their chromosomal structures are so different.  相似文献   

2.
Summary In NF strain 2612 of Streptomyces coelicolor, a giant linear plasmid SCP1 is integrated into the chromosome at the 9 o'clock position. To characterize the integrated structure of SCP1, cloning and sequence analysis of the two junctions between the SCP1 DNA and the chromosomal DNA was carried out. The left junction was revealed to retain an almost intact left terminus of SCP1. On the other hand, the right junction was composed of IS466, deleting completely the right terminal inverted repeat of SCP1. This junction might have been formed by recombination of two IS466 elements, one present at the end of the right terminal inverted repeat of SCP1 and one on the chromosome. Based on these results, we have proposed a model for the integration of SCP1 into the chromosome. The unique conjugal transfer of NF strains and the origin of the chromosomal antibiotic biosynthetic genes in Streptomyces species are also discussed in relation to this model.  相似文献   

3.
SCP1 is a giant linear plasmid of 350 kb coding for the methylenomycin biosynthetic genes in Streptomyces coelicolor. The unusually long terminal inverted repeats present on both ends of SCP1 were analyzed on the nucleotide sequence level. Analysis of six clones containing the terminal 0.35-kb XbaI fragment revealed a slight heterogeneity in the nucleotide sequences of the SCP1 ends. Moreover, it was indicated that this fragment contained seven palindromic inverted repeats and a GT-rich region in the 5'-end strand. The size of the terminal inverted repeats was determined to be 81 kb by the cloning and sequencing of their end-points. An insertion sequence, IS466 was shown to be present just at the end of the right terminal inverted repeat.  相似文献   

4.
The giant linear plasmid SCP1 can integrate into the central region of the linear chromosome of Streptomyces coelicolor A3(2). Nucleotide sequence analysis around the target site for SCP1 integration in strain M145 identified a total of five copies of four insertion sequences (ISs) in a 6.5-kb DNA stretch. Three of the four (IS468, IS469, and IS470) are new IS elements, and the other is IS466. All of these elements contain one open reading frame which encodes a transposase-like protein. Two copies of IS468 (IS468A and -B) are tandemly aligned at the left end of the cluster. Following these, IS469 and IS466 are located in a tail-to-tail orientation with 69.3% identity to each other. IS470 is located at the right end of the cluster. The activities of IS466 and IS468 were demonstrated by transposition experiments and sequence comparison of several copies, respectively.  相似文献   

5.
SCP1, coding for the methylenomycin biosynthesis genes in Streptomyces coelicolor, was shown to be a giant linear plasmid of 350 kb with a copy number of about four by analysis with pulsed-field gel electrophoresis. A detailed physical map of SCP1 was constructed by extensive digestion with six restriction endonucleases, by DNA hybridization experiments, and finally by cloning experiments. SCP1 has unusually long terminal inverted repeats of 80 kb on both ends and an insertion sequence at the end of the right terminal inverted repeat. Analysis by pulsed-field gel electrophoresis in agarose containing sodium dodecyl sulfate revealed that a protein is bound to the terminal 4.1-kb SpeI fragments derived from both ends of SCP1. Treatment with lambda exonuclease or exonuclease III and SpeI digestion also indicated that the 5' ends of SCP1 are attached to a protein.  相似文献   

6.
Streptomyces coelicolor A3(2) strain 2106 carries a 1.85-Mb linear plasmid, SCP1'-cysD, in addition to a 7.2-Mb linear chromosome. Macrorestriction analysis indicated that both linear DNAs are hybrids of the wild-type chromosome and the linear plasmid SCP1 on each side. Nucleotide sequencing of the fusion junctions revealed no homology between the recombination regions. SCP1'-cysD contains an SCP1 telomere and a chromosomal telomere at each end and therefore does not have terminal inverted repeats. In addition, SCP1'-cysD could not be eliminated from strain 2106 by various mutagenic treatments. Thus, we concluded that both the 7.2-Mb chromosome and SCP1'-cysD are chimeric chromosomes generated by a single crossover of the wild-type chromosome and SCP1. This may be regarded as a model of chromosomal duplication in genome evolution.  相似文献   

7.
Streptomyces coelicolor A3(2) possesses two plasmids (SCP1 and SCP2) that act as sex factors. The plasmid deoxyribonucleic acid isolated from S. coelicolor A3(2) SCP1- strains A617 and A585 had the same molecular weight and endonuclease cleavage pattern as the SCP2 plasmid. The plasmidless strain S18 SCP2- was isolated from the A617 X A585 cross. SCP2 plasmid-containing strains acted as donors of chromosomal markers, whereas the plasmidless strain acted as recipient. The transfer of SCP2+ donor strain markers into the SCP2- recipient occurred at high frequencies (approximately 75%), was unidirectional, was initiated from a fixed region of the chromosome, and had the SCP2 fertility factor transferred first. The introduction of the SCP2 plasmid into a recipient strain greatly reduced the recombination frequency. These fertility properties differed from those previously reported, thereby suggesting that the SCP2 plasmid examined in this investigation may be an additional variant to those described in the literature. The SCP2 plasmid also regulated production of three antibacterial substances and conveyed resistance for S. coelicolor A3(2) strains against growth inhibition by one of them.  相似文献   

8.
The chromosomes of several widely used laboratory derivatives of Streptomyces coelicolor A3(2) were found to have 1.06 Mb inverted repeat sequences at their termini (i.e. long-terminal inverted repeats; L-TIRs), which are 50 times the length of the 22 kb TIRs of the sequenced S. coelicolor strain M145. The L-TIRs include 1005 annotated genes and increase the overall chromosome size to 9.7 Mb. The 1.06 Mb L-TIRs are the longest reported thus far for an actinomycete, and are proposed to represent the chromosomal state of the original soil isolate of S. coelicolor A3(2). S. coelicolor A3(2), M600 and J1501 possess L-TIRs, whereas approximately half the examined early mutants of A3(2) generated by ultraviolet (UV) or X-ray mutagenesis have truncated their TIRs to the 22 kb length. UV radiation was found to stimulate L-TIR truncation. Two copies of a transposase gene (SCO0020) flank 1.04 Mb of DNA in the right L-TIR, and recombination between them appears to generate strains containing short TIRs. This TIR reduction mechanism may represent a general strategy by which transposable elements can modulate the structure of chromosome ends. The presence of L-TIRs in certain S. coelicolor strains represents a major chromosomal alteration in strains previously thought to be genetically similar.  相似文献   

9.
UV irradiation of Streptomyces griseus 2247 yielded a new chromosomal deletion mutant, MM9. Restriction and sequencing analysis revealed that homologous recombination between two similar lipoprotein-like open reading frames, which are located 450 and 250 kb from the left and right ends, respectively, caused chromosomal arm replacement. As a result, new 450-kb terminal inverted repeats (TIRs) were formed in place of the original 24-kb TIRs. Frequent homologous recombinations in Streptomyces strains suggest that telomere deletions can usually be repaired by recombinational DNA repair functioning between the intact and deleted TIR sequences on the same chromosome.  相似文献   

10.
AIMS: Characterization of SCP2165, a plasmid identified in the Gram-positive bacterium Streptomyces coelicolor A3(2). METHODS AND RESULTS: Pulsed-field gel electrophoresis (PFGE) of mycelia of a S. coelicolor strain embedded in low melting agarose revealed the presence of a plasmid. Restriction enzyme mapping and sequence analysis of a 2.1 kb fragment revealed that this plasmid could be SCP2. SCP2 and its spontaneous derivative SCP2* are self-transmissible plasmids and have chromosome mobilizing ability (c.m.a.). SCP2* has a c. 1000-fold increased c.m.a. compared with SCP2. Interestingly the plasmid, named SCP2165, shows a c.m.a. from 5x10(-2) to 1x10(-1) which is 50-100-fold higher than that described for crosses involving SCP2*. CONCLUSIONS: SCP2165 is a SCP2 derivative plasmid with the highest c.m.a. so far described for SCP2 derivative plasmids. PFGE, under conditions we used, seems to be a fast way to identify large circular plasmids in Streptomyces strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Further knowledge of the SCP2 family may allow the construction of improved SCP2-derived cloning vectors. SCP2165 could be a potential tool for conjugational transfer of gene clusters between different Streptomyces species.  相似文献   

11.
A cosmid library was constructed for the 350-kb giant linear plasmid SCP1 and aligned on a successive linear map. Only a 0.8-kb gap has remained uncloned in the terminal inverted repeats close to both ends. Partial digestion of the aligned cosmids with EcoRI and hybridization with the flanking fragments of the vector enabled physical mapping of all of the EcoRI fragments. On this map, the methylenomycin biosynthetic gene cluster, the insertion sequence IS466, and the sapCDE genes coding for spore-associated proteins were localized.  相似文献   

12.
13.
14.
M Redenbach  M Bibb  B Gust  B Seitz  A Spychaj 《Plasmid》1999,42(3):174-185
The linear plasmid SCP1 of Streptomyces coelicolor A3(2) is one of the genetically more studied linear streptomycete replicons. Although the genetics of SCP1 and its interaction with the host chromosome have been analyzed for nearly three decades no information exists on its replication. With the help of an ordered cosmid contig for the complete 360-kb element, we have localized a 5439-bp fragment from the central region that confers autonomous replication in Streptomyces lividans. The minimal origin contains two overlapping ORFs which are separated from an AT-rich region which might correspond to the replication start point. ORF1 revealed intensive similarity to a class of DNA-primase/helicases of actinophages and archael plasmids. In addition, we have identified a region in both terminal inverted repeats of SCP1 that shows significant homology to the transposable element Tn4811 located near the ends of the S. lividans 66 chromosome.  相似文献   

15.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

16.
Recombinants between Streptomyces coelicolor A3(2) and Streptomyces griseus Kr-15 were obtained using methods of hybrid construction. Recombinant Rcg1, obtained from a cross between S. griseus and a S. coelicolor UF (SCPI-) strain, phenotypically resembled S. coelicolor UF strains and in crosses with a S. coelicolor NF donor strin produced recombinatn progeny at a frequency of 100%. Recominant Rcg3, like SCP1-carrying S. coelicolor strains, inhibited SCP1-strains of S. coelicolor and in crosses with a UF recipient strain of S. coelicolor generated recombinants at high frequency. In crosses between S. griseus and Rcgi the frequency of recombinant formation was increased about 100-fold relative to crosses between S. griseus and S. coelicolor. Effective transfer of S. grieseus and Rcg3 chromosomal markers into Rcg1 and S. coelicolor, respectively, indicated that S. griseus had donor properties. Studies of the ability of recombinants to support phage growth indicated that parental chromosomal fragments containing genes involved in control of phage-receptor formation and intracellular growth were present in the hybrids. Grisin-producing recombinants, capable of restricting phages attacking S. coelicolor and S. griseus, were obtained.  相似文献   

17.
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5' ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3' ends during replication. Most ('archetypal') Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA.  相似文献   

18.
A Supercos-1 library carrying chromosomal DNA of a plasmid-free derivative of Streptomyces coelicolor A3(2) was organized into an ordered encyclopaedia of overlapping clones by hybridization. The minimum set of overlapping clones representing the entire chromosome (with three short gaps) consists of 319 cosmids. The average insert size is 37.5 kb and the set of clones therefore divides the chromosome into 637 alternating unique and overlapping segments which have an average length of approx. 12.5 kb. More than 170 genes, gene clusters and other genetic markers were mapped to their specific segment by hybridization to the encyclopaedia. Genes could be cloned by direct transformation and complementation of S. coelicolor mutants with cosmids isolated from Escherichia coli , selecting for insertion into the chromosome by homologous recombination. As in other streptomycetes, the ends of the chromosome have long terminal inverted repeats.  相似文献   

19.
The lactococcal insertion sequence IS946 was used to construct suicide vectors for insertion of heterologous DNA into chromosomal and plasmid sequences of Lactococcus lactis subsp. lactis. Electroporation of L. lactis strains, including the recombination-deficient strain MMS362, with the suicide vector pTRK145 yielded 10(1) to 10(3) transformants per micrograms of DNA. pTRK145 insertions occurred primarily in the chromosome, with one insertion detected in a resident plasmid. Vector-specific probes identified junction fragments that varied among transformants, indicating random insertions of pTRK145.  相似文献   

20.
Summary We identified a DNA element of length about 1 kb that is present in two copies in the chromosome of Streptomyces coelicolor A3(2) and is also present on the plasmid SCP1 which has been carefully defined genetically, but never isolated as extrachromosomal DNA.A copy of the element is close (within 5 kb) of a gene coding for an extracellular agarase in the chromosome of S. coelicolor A3(2) and in an NF strain, in which SCP1 has integrated into the chromosome, the agarase gene has been deleted. The element has properties reminiscent of Insertion Sequences in Escherichia coli, but it is not yet know if it can transpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号