首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内参基因加标法定量土壤微生物目标基因绝对拷贝数   总被引:1,自引:0,他引:1  
【目的】通过荧光定量PCR技术对土壤微生物目标基因进行绝对定量,其定量结果的准确性容易受到DNA提取得率以及腐殖酸抑制性的影响。【方法】采用内参基因加标法,利用构建的突变质粒DNA,对供试水稻土壤样品中的微生物16S r RNA目标基因的绝对拷贝数进行荧光定量PCR检测,用来表征该样品中细菌群落总体丰度。在定量前通过双向引物扩增方法验证突变质粒中的内参基因对供试土壤的特异性。【结果】不同水稻土壤样品的DNA提取量在样品间差异较大。通过内参基因加标法对DNA提取量进行校正,显著提高了16S r RNA基因绝对定量的精确度。不同水稻土壤样品间的变异系数为17.8,与未加标处理相比降低了66.7%。在此基础上,进一步通过内参基因加标法对土壤有机质和含水率均呈现典型空间特征差异的6处亚热带湿地土壤样品中的16S r RNA基因进行绝对定量。16S r RNA基因绝对拷贝数与土壤微生物生物量碳具有显著的线性相关性(R2=0.694,P0.001),表明内参校正后的16S r RNA基因绝对拷贝数可以准确反映单位质量土壤中微生物的丰度。【结论】内参基因加标法可以对DNA提取得率以及腐殖酸对PCR扩增的抑制性进行校正,从而提高绝对定量的准确性。基于内参基因加标法的目标基因绝对定量PCR检测,可作为土壤微生物生物量测量,以及微生物功能基因绝对丰度定量的一种核酸检测方法。  相似文献   

2.
Primers were designed to target 16S rRNA and nodD genes of Rhizobium leguminosarum from DNA extracted from two different soil types contaminated with Zn applied in sewage sludge. Numbers of rhizobia estimated using 16S rRNA gene copy number showed higher abundance than those estimated by both nodD and the most-probable-number (MPN) enumeration method using a plant trap host. Both 16S rRNA gene copies and the MPN rhizobia declined with increased levels of Zn contamination, as did the abundance of the functional gene nodD, providing compelling evidence of a toxic effect of Zn on R. leguminosarum populations in the soil. Regression analysis suggested the total Zn concentration in soil as a better predictor of rhizobial numbers than both NH4NO3-extractable and soil solution Zn. R. leguminosarum bv. viciae nodD gene copies were generally less sensitive to Zn than R. leguminosarum bv. trifolii nodD. The latter were generally below detection limits at Zn levels of >250 mg kg(-1). Although there were differences in the actual numbers estimated by each approach, the response to Zn was broadly similar across all methods. These differences were likely to result from the fact that the molecular approaches assess the potential for nodulation while the MPN approach assesses actual nodulation. The results demonstrate that the use of targeted gene probes for assessing environmental perturbations of indigenous soil rhizobial populations may be more sensitive than the conventional plant bioassay and MPN methods.  相似文献   

3.
We have developed a highly sensitive approach to assess the abundance of uncultured bacteria in water samples from the central Baltic Sea by using a noncultured member of the "Epsilonproteobacteria" related to Thiomicrospira denitrificans as an example. Environmental seawater samples and samples enriched for the target taxon provided a unique opportunity to test the approach over a broad range of abundances. The approach is based on a combination of taxon- and domain-specific real-time PCR measurements determining the relative T. denitrificans-like 16S rRNA gene and 16S rRNA abundances, as well as the determination of total cell counts and environmental RNA content. It allowed quantification of T. denitrificans-like 16S rRNA molecules or 16S rRNA genes as well as calculation of the number of ribosomes per T. denitrificans-like cell. Every real-time measurement and its specific primer system were calibrated using environmental nucleic acids obtained from the original habitat for external standardization. These standards, as well as the respective samples to be measured, were prepared from the same DNA or RNA extract. Enrichment samples could be analyzed directly, whereas environmental templates had to be preamplified with general bacterial primers before quantification. Preamplification increased the sensitivity of the assay by more than 4 orders of magnitude. Quantification of enrichments with or without a preamplification step yielded comparable results. T. denitrificans-like 16S rRNA molecules ranged from 7.1 x 10(3) to 4.4 x 10(9) copies ml(-1) or 0.002 to 49.7% relative abundance. T. denitrificans-like 16S rRNA genes ranged from 9.0 x 10(1) to 2.2 x10(6) copies ml(-1) or 0.01 to 49.7% relative abundance. Detection limits of this real-time-PCR approach were 20 16S rRNA molecules or 0.2 16S rRNA gene ml(-1). The number of ribosomes per T. denitrificans-like cell was estimated to range from 20 to 200 in seawater and reached up to 2,000 in the enrichments. The results indicate that our real-time PCR approach can be used to determine cellular and relative abundances of uncultured marine bacterial taxa and to provide information about their levels of activity in their natural environment.  相似文献   

4.
3 次连续重复提取DNA 能较好反映土壤微生物丰度   总被引:6,自引:1,他引:6  
【目的】研究同一个土壤需要反复提取几次才能在最大程度上反映土壤微生物的丰度,探讨风干土壤代替新鲜土壤用于微生物丰度研究的可行性。【方法】针对两种理化性质具有较大差异的旱地和稻田新鲜土壤及其风干土壤,分别对土壤微生物进行5次连续裂解提取DNA。通过实时荧光定量PCR技术分析连续反复提取对土壤古菌和细菌16S rRNA gene数量、氨氧化古菌和细菌功能基因amoA数量的影响。【结果】3次连续提取DNA占5次提取DNA总量的76%以上,氨氧化古菌、氨氧化细菌、古菌和细菌4类微生物的3次连续提取最低回收率为77.5%;与新鲜土壤相比,风干处理导致氨氧化古菌、氨氧化细菌、古菌、细菌的数量分别降低84.3%、81.2%、12.5%和90.3%,然而,2种土壤风干过程中主要微生物类群的数量变化规律基本一致,表明土壤微生物对风干处理的响应可能受土壤类型的影响较小。【结论】土壤微生物连续3次裂解能较好反映微生物丰度。与新鲜土壤相比,风干过程显著降低了土壤微生物丰度,然而,通过风干土壤中微生物丰度的变化趋势反映新鲜土壤中微生物数量变化规律具有一定的可行性。  相似文献   

5.
Little is known about the changes in abundance of microbial taxa in relation to the chronosequence of receding glaciers. This study investigated how the abundances of ten bacterial phyla or classes varied along successional gradients in two glaciers, Ödenwinkelkees and Rotmoosferner, in the central Alps. Quantitative PCR was used to estimate the abundance of the different bacterial taxa in extended glacier chronosequences, including 10- to 160-year-old successional stages, the surface of the glacier, and a fully established soil. Actinobacteria (15–30%) was the dominant group within the chronosequences. Several taxa showed significant differences in the number of taxa-specific 16S rRNA gene copies per nanogram of DNA and/or in the ratio of taxa-specific to the total bacterial 16S rRNA gene copies (i.e., the relative abundance of the different taxa within the bacterial community) between the established soils or the glacier surface and the 10- to 160-year-old successional stages. A significantly higher proportion of Βetaproteobacteria (20%) was observed on the surface of both glaciers. However, no differences were observed between the 10- to 160-year-old successional stages in the number of taxa-specific 16S rRNA gene copies per nanogram of DNA or in the ratio of taxa-specific to the total bacterial 16S rRNA gene copies for the different taxa. Nevertheless, when the relative abundance data from all the studied taxa were combined and analyzed altogether, most of the sites could be distinguished from one other. This indicates that the overall composition of the bacterial community was more affected than the abundance of the targeted taxa by changes in environmental conditions along the chronosequences.  相似文献   

6.
We examined the role of microorganisms in the degradation of the organophosphate insecticide chlorpyrifos in soils from the United Kingdom and Australia. The kinetics of degradation in five United Kingdom soils varying in pH from 4.7 to 8.4 suggested that dissipation of chlorpyrifos was mediated by the cometabolic activities of the soil microorganisms. Repeated application of chlorpyrifos to these soils did not result in the development of a microbial population with an enhanced ability to degrade the pesticide. A robust bacterial population that utilized chlorpyrifos as a source of carbon was detected in an Australian soil. The enhanced ability to degrade chlorpyrifos in the Australian soil was successfully transferred to the five United Kingdom soils. Only soils with a pH of >/=6.7 were able to maintain this degrading ability 90 days after inoculation. Transfer and proliferation of degrading microorganisms from the Australian soil to the United Kingdom soils was monitored by molecular fingerprinting of bacterial 16S rRNA genes by PCR-denaturing gradient gel electrophoresis (DGGE). Two bands were found to be associated with enhanced degradation of chlorpyrifos. Band 1 had sequence similarity to enterics and their relatives, while band 2 had sequence similarity to strains of Pseudomonas. Liquid enrichment culture using the Australian soil as the source of the inoculum led to the isolation of a chlorpyrifos-degrading bacterium. This strain had a 16S rRNA gene with a sequence identical to that of band 1 in the DGGE profile of the Australian soil. DNA probing indicated that genes similar to known organophosphate-degrading (opd) genes were present in the United Kingdom soils. However, no DNA hybridization signal was detected for the Australian soil or the isolated degrader. This indicates that unrelated genes were present in both the Australian soil and the chlorpyrifos-degrading isolate. These results are consistent with our observations that degradation of chlorpyrifos in these systems was unusual, as it was growth linked and involved complete mineralization. As the 16S rRNA gene of the isolate matched a visible DGGE band from the Australian soil, the isolate is likely to be both prominent and involved in the degradation of chlorpyrifos in this soil.  相似文献   

7.
We examined the role of microorganisms in the degradation of the organophosphate insecticide chlorpyrifos in soils from the United Kingdom and Australia. The kinetics of degradation in five United Kingdom soils varying in pH from 4.7 to 8.4 suggested that dissipation of chlorpyrifos was mediated by the cometabolic activities of the soil microorganisms. Repeated application of chlorpyrifos to these soils did not result in the development of a microbial population with an enhanced ability to degrade the pesticide. A robust bacterial population that utilized chlorpyrifos as a source of carbon was detected in an Australian soil. The enhanced ability to degrade chlorpyrifos in the Australian soil was successfully transferred to the five United Kingdom soils. Only soils with a pH of ≥6.7 were able to maintain this degrading ability 90 days after inoculation. Transfer and proliferation of degrading microorganisms from the Australian soil to the United Kingdom soils was monitored by molecular fingerprinting of bacterial 16S rRNA genes by PCR-denaturing gradient gel electrophoresis (DGGE). Two bands were found to be associated with enhanced degradation of chlorpyrifos. Band 1 had sequence similarity to enterics and their relatives, while band 2 had sequence similarity to strains of Pseudomonas. Liquid enrichment culture using the Australian soil as the source of the inoculum led to the isolation of a chlorpyrifos-degrading bacterium. This strain had a 16S rRNA gene with a sequence identical to that of band 1 in the DGGE profile of the Australian soil. DNA probing indicated that genes similar to known organophosphate-degrading (opd) genes were present in the United Kingdom soils. However, no DNA hybridization signal was detected for the Australian soil or the isolated degrader. This indicates that unrelated genes were present in both the Australian soil and the chlorpyrifos-degrading isolate. These results are consistent with our observations that degradation of chlorpyrifos in these systems was unusual, as it was growth linked and involved complete mineralization. As the 16S rRNA gene of the isolate matched a visible DGGE band from the Australian soil, the isolate is likely to be both prominent and involved in the degradation of chlorpyrifos in this soil.  相似文献   

8.
Real-time PCR has been widely used to evaluate gene abundance in natural microbial habitats. However, PCR-inhibitory substances often reduce the efficiency of PCR, leading to the underestimation of target gene copy numbers. Digital PCR using microfluidics is a new approach that allows absolute quantification of DNA molecules. In this study, digital PCR was applied to environmental samples, and the effect of PCR inhibitors on DNA quantification was tested. In the control experiment using λ DNA and humic acids, underestimation of λ DNA at 1/4400 of the theoretical value was observed with 6.58ngμL(-1) humic acids. In contrast, digital PCR provided accurate quantification data with a concentration of humic acids up to 9.34ngμL(-1). The inhibitory effect of paddy field soil extract on quantification of the archaeal 16S rRNA gene was also tested. By diluting the DNA extract, quantified copy numbers from real-time PCR and digital PCR became similar, indicating that dilution was a useful way to remedy PCR inhibition. The dilution strategy was, however, not applicable to all natural environmental samples. For example, when marine subsurface sediment samples were tested the copy number of archaeal 16S rRNA genes was 1.04×10(3)copies/g-sediment by digital PCR, whereas real-time PCR only resulted in 4.64×10(2)copies/g-sediment, which was most likely due to an inhibitory effect. The data from this study demonstrated that inhibitory substances had little effect on DNA quantification using microfluidics and digital PCR, and showed the great advantages of digital PCR in accurate quantifications of DNA extracted from various microbial habitats.  相似文献   

9.
G C Wang  Y Wang 《Applied microbiology》1997,63(12):4645-4650
PCR is routinely used in amplification and cloning of rRNA genes from environmental DNA samples for studies of microbial community structure and identification of novel organisms. There have been concerns about generation of chimeric sequences as a consequence of PCR coamplification of highly conserved genes, because such sequences may lead to reports of nonexistent organisms. To quantify the frequency of chimeric molecule formation, mixed genomic DNAs from eight actinomycete species whose 16S rRNA sequences had been determined were used for PCR coamplification of 16S rRNA genes. A large number of cloned 16S ribosomal DNAs were examined by sequence analysis, and chimeric molecules were identified by multiple-sequence alignment with reference species. Here, we report that the level of occurrence of chimeric sequences after 30 cycles of PCR amplification was 32%. We also show that PCR-induced chimeras were formed between different rRNA gene copies from the same organism. Because of the wide use of PCR for direct isolation of 16S rRNA sequences from environmental DNA to assess microbial diversity, the extent of chimeric molecule formation deserves serious attention.  相似文献   

10.
Archaeal diversity along a soil salinity gradient prone to disturbance   总被引:2,自引:0,他引:2  
We employed a cultivation-independent approach to examine archaeal diversity along a transient soil salinity gradient at Salt Spring in British Columbia, Canada that is routinely eroded due to heavy, recurrent rainfall. Archaeal 16S rRNA gene libraries were created using DNA extracted from three soil samples collected along this gradient. Statistical comparisons indicated similar archaeal richness across sites but, a significant shift in archaeal community composition along the salinity gradient. Seven distinct phylogenetic groups were represented in soil libraries. Haloarchaea were the most commonly sampled group. Other 16S rRNA sequences were related to uncultured Euryarchaeota and Crenarchaeota or halophilic methanogens. Haloarchaeal diversity was remarkably high in soil of elevated salinity compared with previously characterized haloarchaeal communities. Salt Spring haloarchaea were not closely related to known low-salt adapted/tolerant species, suggesting they may be frequently faced with local mortality as a result of frequent declines in soil salinity. We speculate that ecosystem disturbance -- in the form of salinity fluctuations -- is one mechanism for maintaining a diverse community of haloarchaea at Salt Spring.  相似文献   

11.
Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples.  相似文献   

12.
Genome maps of Campylobacter jejuni and Campylobacter coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
D E Taylor  M Eaton  W Yan    N Chang 《Journal of bacteriology》1992,174(7):2332-2337
Little information concerning the genome of either Campylobacter jejuni or Campylobacter coli is available. Therefore, we constructed genomic maps of C. jejuni UA580 and C. coli UA417 by using pulsed-field gel electrophoresis. The genome sizes of C. jejuni and C. coli strains are approximately 1.7 Mb, as determined by SalI and SmaI digestion (N. Chang and D. E. Taylor, J. Bacteriol. 172:5211-5217, 1990). The genomes of both species are represented by single circular DNA molecules, and maps were constructed by partial restriction digestion and hybridization of DNA fragments extracted from low-melting-point agarose gels. Homologous DNA probes, encoding the flaAB and 16S rRNA genes, as well as heterologous DNA probes from Escherichia coli, Bacillus subtilis, and Haemophilus influenzae, were used to identify the locations of particular genes. C. jejuni and C. coli contain three copies of the 16S and 23S rRNA genes. However, they are not located together within an operon but show a distinct split in at least two of their three copies. The positions of various housekeeping genes in both C. jejuni UA580 and C. coli UA417 have been determined, and there appears to be some conservation of gene arrangement between the two species.  相似文献   

13.
The impacts of planted transgenic rice varieties on bacterial communities in paddy soils were monitored using both cultivation and molecular methods. The rice field plot consisted of eighteen subplots planted with two genetically modified (GM) rice and four non-GM rice plants in three replicates. Analysis with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were quite similar to each other in a given month, suggesting that there were no significant differences in bacterial communities between GM and non- GM rice soils. The bacterial community structures appeared to be generally stable with the seasons, as shown by a slight variation of microbial population levels and DGGE banding patterns over the year. Comparison analysis of 16S rDNA clone libraries constructed from soil bacterial DNA showed that there were no significant differences between GM and non-GM soil libraries but revealed seasonal differences of phyla distribution between August and December. The composition profile of phospholipid fatty acids (PLFA) between GM and non-GM soils also was not significantly different to each other. When soil DNAs were analyzed with PCR by using primers for the bar gene, which was introduced into GM rice, positive DNA bands were found in October and December soils. However, no bar gene sequence was detected in PCR analysis with DNAs extracted from both cultured and uncultured soil bacterial fractions. The result of this study suggested that, in spite of seasonal variations of bacterial communities and persistence of the bar gene, the bacterial communities of the experimental rice field were not significantly affected by cultivation of GM rice varieties.  相似文献   

14.
Nuclease S1 mapping of 16S ribosomal RNA in ribosomes   总被引:1,自引:0,他引:1  
Escherichia coli 16S rRNA and 16S-like rRNAs from other species have several universally conserved sequences which are believed to be single-stranded in ribosomes. The quantitative disposition of these sequences within ribosomes is not known. Here we describe experiments designed to explore the availability of universal 16S rRNA sequences for hybridization with DNA probes in 30S particles and 70S ribosomes. Unlike previous investigations, quantitative data on the accessibility of DNA probes to the conserved portions of 16S rRNA within ribosomes was acquired. Uniquely, the experimental design also permitted investigation of cooperative interactions involving portions of conserved 16S rRNA. The basic strategy employed ribosomes, 30S subunits, and 16S rRNAs, which were quantitatively analyzed for hybridization efficiency with synthetic DNA in combination with nuclease S1. In deproteinated E. coli 16S rRNA and 30S subunits, the regions 520-530, 1396-1404, 1493-1504, and 1533-1542 are all single-stranded and unrestricted for hybridization to short synthetic DNAs. However, the quantitative disposition of the sequences in 70S ribosomes varies with each position. In 30S subunits there appear to be no cooperative interactions between the 16S rRNA universal sequences investigated.  相似文献   

15.
We have developed a highly sensitive approach to assess the abundance of uncultured bacteria in water samples from the central Baltic Sea by using a noncultured member of the “Epsilonproteobacteria” related to Thiomicrospira denitrificans as an example. Environmental seawater samples and samples enriched for the target taxon provided a unique opportunity to test the approach over a broad range of abundances. The approach is based on a combination of taxon- and domain-specific real-time PCR measurements determining the relative T. denitrificans-like 16S rRNA gene and 16S rRNA abundances, as well as the determination of total cell counts and environmental RNA content. It allowed quantification of T. denitrificans-like 16S rRNA molecules or 16S rRNA genes as well as calculation of the number of ribosomes per T. denitrificans-like cell. Every real-time measurement and its specific primer system were calibrated using environmental nucleic acids obtained from the original habitat for external standardization. These standards, as well as the respective samples to be measured, were prepared from the same DNA or RNA extract. Enrichment samples could be analyzed directly, whereas environmental templates had to be preamplified with general bacterial primers before quantification. Preamplification increased the sensitivity of the assay by more than 4 orders of magnitude. Quantification of enrichments with or without a preamplification step yielded comparable results. T. denitrificans-like 16S rRNA molecules ranged from 7.1 × 103 to 4.4 × 109 copies ml−1 or 0.002 to 49.7% relative abundance. T. denitrificans-like 16S rRNA genes ranged from 9.0 × 101 to 2.2 ×106 copies ml−1 or 0.01 to 49.7% relative abundance. Detection limits of this real-time-PCR approach were 20 16S rRNA molecules or 0.2 16S rRNA gene ml−1. The number of ribosomes per T. denitrificans-like cell was estimated to range from 20 to 200 in seawater and reached up to 2,000 in the enrichments. The results indicate that our real-time PCR approach can be used to determine cellular and relative abundances of uncultured marine bacterial taxa and to provide information about their levels of activity in their natural environment.  相似文献   

16.
Characterization of Paenibacillus popilliae rRNA operons   总被引:1,自引:0,他引:1  
The terminal 39 nucleotides on the 3' end of the 16S rRNA gene, along with the complete DNA sequences of the 5S rRNA, 23S rRNA, tRNA(Ile), and tRNA(Ala) genes were determined for Paenibacillus popilliae using strains NRRL B-2309 and Dutky 1. Southern hybridization analysis with a 16S rDNA hybridization probe and restriction-digested genomic DNA demonstrated 8 copies of the 16S rRNA gene in P. popilliae strains KLN 3 and Dutky 1. Additionally, the 23S rRNA gene in P. popilliae strains NRRL B-2309, KLN 3, and Dutky 1 was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to occur as 8 copies. It was concluded that these 3 P. popilliae strains contained 8 rrn operons. The 8 operon copies were preferentially located on approximately one-half of the chromosome and were organized into 3 different patterns of genes, as follows: 16S-23S-5S, 16S-ala-23S-5S, and 16S-5S-ile-ala-23S-5S. This is the first report to identify a 5S rRNA gene between the 16S and 23S rRNA genes of a bacterial rrn operon. Comparative analysis of the nucleotides on the 3' end of the 16S rRNA gene suggests that translation of P. popilliae mRNA may occur in Bacillus subtilis and Escherichia coli.  相似文献   

17.
采用黄铁矿、黄铜矿、硫酸亚铁和硫粉混合物作为主要能源物质在50°C条件下分别培养中度嗜热细菌混合物,研究其细菌多样性。提取细菌基因组总DNA,采用PCR结合限制性酶切片段多态性分析(RFLP)方法进行细菌16SrRNA基因的系统发育分析,比较不同能源条件下富集培养的混合细菌群落构成的差异。从3个培养物中共获得阳性克隆303个并进行RFLP分析,对29种不同酶切谱型的克隆插入序列进行测定和系统发育分析。大部分序列与已报道的浸矿微生物16SrRNA序列相似性较高(89.1%~99.7%),归属于硫化叶菌属的耐温氧化硫化杆菌(Sulfobacillus thermotolerans)和热氧化硫化杆菌(Sulfobacillus thermosulfidooxidans),嗜酸硫杆菌属的喜温硫杆菌(Acidithiobacillus caldus),钩端螺旋菌属的嗜铁钩端螺旋菌(Leptospirillumferriphilum)以及unculturedforest soil bacterium、uncultured proteobacterium。其中Acidithiobacillus caldus,Sulfobacillus thermotolerans,Leptospirillumferriphilum3种细菌为三类能源物质培养物中的优势细菌类群。L.ferriphilum在黄铁矿培养体系(53.8%)和硫酸亚铁和硫粉为能源的培养体系中(45.9%)中丰度最高;在以黄铜矿为能源物质的培养体系中,S.thermotolerans的比例大幅上升(70.1%)。关键词:中度嗜热细菌;生物多样性;生物浸矿;喜温硫杆菌(Acidithiobacillus caldus);耐温氧化硫化杆菌(Sulfobacillus thermotolerans);嗜铁钩端螺旋菌(Leptospirillumferriphilum)  相似文献   

18.
[目的]连续3次风干-湿润循环培养水稻土,在DNA和RNA水平下,探究细菌对干湿交替胁迫的响应机制,明确风干水稻土能否代替新鲜土壤进行细菌群落组成分析.[方法]针对我国江苏省常熟市水稻土,开展新鲜土壤的3次风干-湿润循环连续培养处理(每次循环中风干、湿润状态各维持7 d),在DNA和RNA水平应用16S rRNA基因高...  相似文献   

19.
The number of gene copies for 5S ribosomal ribonucleic acid (rRNA), relative to that for 16 and 23S rRNA, has been determined by deoxyribonucleic acid (DNA)-RNA hybridization for Escherichia coli and Bacillus megaterium. In both cases, the number of 5S rRNA genes equals the number of 16 or 23S rRNA genes. Rapid procedures for preparing extremely highly purified DNA suitable for DNA-RNA hybridization experiments and chemically pure 5S rRNA are described.  相似文献   

20.
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 x 10(5) to 8.9 x 10(5) copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 x 10(3) to 2.6 x 10(4), 7.4 x 10(2) to 1.4 x 10(3), 2.5 x 10(2) to 6.4 x 10(3), and 1.2 x 10(3) to 5.5 x 10(3), respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号