首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.  相似文献   

2.
Mitochondrial gene transfer to the nuclear genome could affect the accuracy of results in population genetics and evolutionary studies using mitochondrial gene markers. In a population genetics study of the red turpentine beetle (Dendroctonus valens), an invasive species in China, we found numerous ambiguous sites existing in the Cytochrome Oxidase I (COI) gene sequences obtained directly from polymerase chain reaction (PCR) products amplified from total genomic DNA using universal primers. By comparing the profiles of restriction endonuclease digestions and the sequences of PCR products amplified from mitochondrial DNA and nuclear DNA of the same individuals, we confirmed it was a phenomenon of mitochondrial gene transfer to the nuclear genome. Large numbers of COI pseudogenes were detected in this species. According to different levels of condon position bias and phylogenetic analysis, these should have originated from independent integration events. The impact of nuclear mitochondrial DNA sequences on population genetics analyses was discussed.  相似文献   

3.
Mitochondrial ribosomal DNA is commonly used in DNA-based dietary analyses. In such studies, these sequences are generally assumed to be the only version present in DNA of the organism of interest. However, nuclear pseudogenes that display variable similarity to the mitochondrial versions are common in many taxa. The presence of nuclear pseudogenes that co-amplify with their mitochondrial paralogues can lead to several possible confounding interpretations when applied to estimating animal diet. Here, we investigate the occurrence of nuclear pseudogenes in fecal samples taken from bottlenose dolphins (Tursiops truncatus) that were assayed for prey DNA with a universal primer technique. We found pseudogenes in 13 of 15 samples and 1-5 pseudogene haplotypes per sample representing 5-100% of all amplicons produced. The proportion of amplicons that were pseudogenes and the diversity of prey DNA recovered per sample were highly variable and appear to be related to PCR cycling characteristics. This is a well-sampled system where we can reliably identify the putative pseudogenes and separate them from their mitochondrial paralogues using a number of recommended means. In many other cases, it would be virtually impossible to determine whether a putative prey sequence is actually a pseudogene derived from either the predator or prey DNA. The implications of this for DNA-based dietary studies, in general, are discussed.  相似文献   

4.
The incorporation of fragments of mitochondrial DNA (mtDNA) in the nuclear genome, known as numts (nuclear mitochondrial pseudogenes), undermines general assumptions concerning the use of mtDNA in phylogenetic and phylogeographic studies. Accidental amplifications of these nuclear copies instead of the mitochondrial target can lead to crucial misinterpretations, thus the correct identification of numts and their differentiation from true mitochondrial sequences are important in preventing this kind of error. Our goal was to describe the existence of cytochrome b (cytb) numts in the leafcutter ant Acromyrmex striatus (Roger, 1863). PCR products were directly sequenced using a pair of universal primers designed to amplify the cytb gene of these insects. Other species of leafcutter ants were also sequenced. The sequences were analyzed and the numts were identified by the presence of double peaks, indels and premature stop codons. Only A. striatus clearly showed the presence of numts, while the other species displayed the expected amplification of the mtDNA cytb gene target using the same primer pair. We hope that our report will highlight the benefits and challenges of using mtDNA in the molecular phylogenetic reconstruction and phylogeographic studies of ants, while establishing the importance of numts reports for future studies.  相似文献   

5.
青蟹线粒体COI假基因的分离和特征分析   总被引:6,自引:0,他引:6  
线粒体DNA标记在遗传结构和系统进化研究中得到广泛应用,然而核假基因的存在对此有很大威胁。本文以中国东南沿海的青蟹(Scylla paramamosain)为研究对象,利用线粒体COI基因的通用引物和特异性引物进行扩增,分别得到34个假基因(nuclear mitochondrial pseudogenes, Numts)和5个线粒体COI基因序列。在所获得的34个假基因中共定义了29种单倍型,根据序列的相似度,这些假基因可以分为2类,每类假基因都有各自保守的核苷酸序列。第Ⅰ类假基因存在2处插入序列和1处8 bp的缺失序列,这些位点导致了整个阅读框的移位;在第Ⅱ类假基因和5个线粒体COI序列中只有碱基替换,未发现插入和缺失序列。实验结果分析表明,这两类假基因分别代表了2次核整合事件,即核转移事件的最低值。研究结果提示了  相似文献   

6.
Venkatesh B  Dandona N  Brenner S 《Genomics》2006,87(2):307-310
Contrary to previous observations that fish genomes are devoid of nuclear mitochondrial pseudogenes, a genome-wide survey identified a large number of "recent" and "ancient" nuclear mitochondrial DNA fragments (Numts) in the whole-genome sequences of the fugu (Takifugu rubripes), Tetraodon nigroviridis, and zebrafish (Danio rerio). We have analyzed the latest assembly (v4.0) of the fugu genome and show that, like the Anopheles genome, the fugu nuclear genome does not contain mitochondrial pseudogenes. Fugu assembly v4.0 contains a single scaffold representing the near complete sequence of the fugu mitochondria. The "recent" Numts identified by the previous study in fugu assembly v2.0 are in fact shotgun sequences of mitochondrial DNA that were misassembled with the nuclear sequences, whereas the "ancient" Numts appear to be the result of spurious matches. It is likely that the Numts identified in the genomes of Tetraodon and zebrafish are also similar artifacts. Shotgun sequences of whole genomes often include some mitochondrial sequences. Therefore, any Numts identified in shotgun-sequence assemblies should be verified by Southern hybridization or PCR amplification.  相似文献   

7.
Structure and chromosomal distribution of human mitochondrial pseudogenes   总被引:15,自引:0,他引:15  
Nuclear mitochondrial pseudogenes (Numts) have been found in the genome of many eukaryote species, including humans. Using a BLAST approach, we found 1105 DNA sequences homologous to mitochondrial DNA (mtDNA) in the August 2001 Goldenpath human genome database. We assembled these sequences manually into 286 pseudogenes on the basis of single insertion events and constructed a chromosomal map of these Numts. Some pseudogenes appeared highly modified, containing inversions, deletions, duplications, and displaced sequences. In the case of four randomly selected Numts, we used PCR tests on cells lacking mtDNA to ensure that our technique was free from genome-sequencing artifacts. Furthermore, phylogenetic investigation suggested that one Numt, apparently inserted into the nuclear genome 25-30 million years ago, had been duplicated at least 10 times in various chromosomes during the course of evolution. Thus, these pseudogenes should be very useful in the study of ancient mtDNA and nuclear genome evolution.  相似文献   

8.
9.
This work aimed to determine the inter- and intra-specific variations in populations of Bulinus truncatus and Bulinus beccari, the intermediate hosts of Schistosoma haematobium in Saudi Arabia, and to develop species-specific primers to identify these snails as a first step in the development of multiplex PCR for simultaneously identifying the snails and diagnosing its infections in a single step. Two populations of B. truncatus were collected from Asser and Bisha (A and B), and two B. beccari populations were collected from Mahial Asser and Merba (C and D). The snails' genomic DNA was extracted and amplified using 5 different primers. The primers displayed variable intra- and inter-specific differences across the populations. The largest RAPD-PCR fragments were cloned into a vector as a preparatory step for sequencing. Similarity searches for the sequenced cloned inserts revealed no similar sequences in the GenBank database or its associated databases. Specific primers used to target the B. truncatus and B. beccari genomes were designed using the Gene Runner program and based on the DNA sequences obtained from RAPD fragment sequence analyses. Using these primers for specific PCRs resulted in expected single-band PCR products of 536 bp for B. beccari and 478 bp for B. truncatus. These results will be helpful for simultaneously identifying B. truncatus and B. beccari snails and diagnosing S. haematobium infections within the snails using single step multiplex PCR.  相似文献   

10.
As has been demonstrated recently, the transfer of genetic material from mitochondria to the nucleus and its integration into the nuclear genome is a continuous and dynamic process. Fragments of mitochondrial DNA (mtDNA) are incorporated in the nuclear genome as noncoding sequences, which are called nuclear mitochondrial pseudogenes (NUMT pseudogenes or NUMT inserts). In various eukaryotes, NUMT pseudogenes are distributed through different chromosomes to form a “library” of mtDNA fragments, providing important information on genome evolution. The escape of mtDNA from mitochondria is mostly associated with mitochondrial damage and mitophagy. Fragments of mtDNA may be integrated into nuclear DNA (nDNA) during repair of double-strand breaks (DSBs), which are caused by endogenous or exogenous agents. DSB repair of nDNA with a capture of mtDNA fragments may occur via nonhomologous end joining or a similar mechanism that involves microhomologous terminal sequences. An analysis of the available data makes it possible to suppose that the NUMT pseudogene formation rate depends on the DSB rate in nDNA, the activity of the repair systems, and the number of mtDNA fragments leaving organelles and migrating into the nucleus. Such situations are likely after exposure to damaging agents, first and foremost, ionizing radiation. Not only do new NUMT pseudogenes change the genome structure in the regions of their integration, but they may also have a significant impact on the actualization of genetic information. The de novo integration of NUMT pseudogenes in the nuclear genome may play a role in various pathologies and aging. NUMT pseudogenes may cause errors in PCR-based analyses of free mtDNA as a component of total cell DNA because of their coamplification.  相似文献   

11.
Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.Correspondence to: A.C. van der Kuyl  相似文献   

12.
DNA barcoding is a diagnostic method of species identification based on sequencing a short mitochondrial DNA fragment of cytochrome oxidase I (COI), but its ability to correctly diagnose species is limited by the presence of nuclear mitochondrial pseudogenes (numts). Numts can be coamplified with the mitochondrial orthologue when using universal primers, which can lead to incorrect species identification and an overestimation of the number of species. Some researchers have proposed that using more specific primers may help eliminate numt coamplification, but the efficacy of this method has not been thoroughly tested. In this study, we investigate the taxonomic distribution of numts in 11 lineages within the insect order Orthoptera, by analysing cloned COI sequences and further test the effects of primer specificity on eliminating numt coamplification in four lineages. We find that numts are coamplified in all 11 taxa using universal (barcoding) primers, which suggests that numts may be widespread in other taxonomic groups as well. Increased primer specificity is only effective at reducing numt coamplification in some species tested, and only eliminates it in one species tested. Furthermore, we find that a number of numts do not have stop codons or indels, making it difficult to distinguish them from mitochondrial orthologues, thus putting the efficacy of barcoding quality control measures under question. Our findings suggest that numt coamplification is a serious problem for DNA barcoding and more quality control measures should be implemented to identify and eliminate numts prior to using mitochondrial barcodes for species diagnoses.  相似文献   

13.
Five oligonucleotide sequences are described that were used as primers in the polymerase chain reaction (PCR) to amplify specific sequences from Listeria DNA. When all five primers were used in combination, three PCR products were possible; a Listeria specific product that occurs with DNA from any Listeria sp., a Listeria monocytogenes specific product that occurs only in the presence of DNA from this organism and a universal product that is found using DNA from any bacterial source. The occurrence of these PCR products was used as a diagnostic test on bacteria isolated from various food samples to detect Listeria sp. and L. monocytogenes.  相似文献   

14.
Here we show that multiple DNA sequences, similar to the mitochondrial cytochrome oxidase I (COI) gene, occur within single individuals in at least 10 species of the snapping shrimp genus Alpheus. Cloning of amplified products revealed the presence of copies that differed in length and (more frequently) in base substitutions. Although multiple copies were amplified in individual shrimp from total genomic DNA (gDNA), only one sequence was amplified from cDNA. These results are best explained by the presence of nonfunctional duplications of a portion of the mtDNA, probably located in the nuclear genome, since transfer into the nuclear gene would render the COI gene nonfunctional due to differences in the nuclear and mitochondrial genetic codes. Analysis of codon variation suggests that there have been 21 independent transfer events in the 10 species examined. Within a single animal, differences between the sequences of these pseudogenes ranged from 0.2% to 20.6%, and those between the real mtDNA and pseudogene sequences ranged from 0.2% to 18.8% (uncorrected). The large number of integration events and the large range of divergences between pseudogenes and mtDNA sequences suggest that genetic material has been repeatedly transferred from the mtDNA to the nuclear genome of snapping shrimp. Unrecognized pseudogenes in phylogenetic or population studies may result in spurious results, although previous estimates of rates of molecular evolution based on Alpheus sister taxa separated by the Isthmus of Panama appear to remain valid. Especially worrisome for researchers are those pseudogenes that are not obviously recognizable as such. An effective solution may be to amplify transcribed copies of protein-coding mitochondrial genes from cDNA rather than using genomic DNA.  相似文献   

15.
A PCR-based approach to sequencing complete mitochondrial genomes is described along with a set of 86 primers designed primarily for avian mitochondrial DNA (mtDNA). This PCR-based approach allows an accurate determination of complete mtDNA sequences that is faster than sequencing cloned mtDNA. The primers are spaced at about 500-base intervals along both DNA strands. Many of the primers incorporate degenerate positions to accommodate variation in mtDNA sequence among avian taxa and to reduce the potential for preferential amplification of nuclear pseudogenes. Comparison with published vertebrate mtDNA sequences suggests that many of the primers will have broad taxonomic utility. In addition, these primers should make available a wider variety of mitochondrial genes for studies based on smaller data sets.  相似文献   

16.
The effect of the duration of storage of entomological material on DNA preservation was estimated. The results of the optimization of conditions for the analysis of random amplified polymorphic DNA in a polymerase chain reaction (RAPD-PCR) are presented as applied to the DNA of lepidopterans of the family Papilionidae. RAPD patterns are shown for the first time in Atrophaneura alcinous and four species of the genus Parnassius (sensu lata). The applicability of museum specimens of butterflies for RAPD analysis was demonstrated. The results of PCR analysis using DNA obtained from different collection specimens stored for up to five years were compared. The authenticity of DNA obtained from collection specimens was proved using PCR with universal primers, which are specific to the COI and COII cytochrome genes of mitochondrial DNA (mt DNA). The lengths of individuals gene fragments obtained by the amplification of both museum and live specimens were 800 and 1600 bp. The conservative regions of mitochondrial genome were shown to be slightly different in two A. alcinous subspecies.  相似文献   

17.
Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome   总被引:11,自引:0,他引:11  
The hundreds of mitochondrial pseudogenes in the human nuclear genome sequence (numts) constitute an excellent system for studying and dating DNA duplications and insertions. These pseudogenes are associated with many complete mitochondrial genome sequences and through those with a good fossil record. By comparing individual numts with primate and other mammalian mitochondrial genome sequences, we estimate that these numts arose continuously over the last 58 million years. Our pairwise comparisons between numts suggest that most human numts arose from different mitochondrial insertion events and not by DNA duplication within the nuclear genome. The nuclear genome appears to accumulate mtDNA insertions at a rate high enough to predict within-population polymorphism for the presence/absence of many recent mtDNA insertions. Pairwise analysis of numts and their flanking DNA produces an estimate for the DNA duplication rate in humans of 2.2 × 10–9 per numt per year. Thus, a nucleotide site is about as likely to be involved in a duplication event as it is to change by point substitution. This estimate of the rate of DNA duplication of noncoding DNA is based on sequences that are not in duplication hotspots, and is close to the rate reported for functional genes in other species.  相似文献   

18.
勒氏笛鲷微卫星位点的筛选及特征分析   总被引:8,自引:1,他引:7  
郭昱嵩  王中铎  刘楚吾  刘筠 《遗传》2007,29(3):355-359
采用PCR法快速筛选勒氏笛鲷(Lutjanus russelli)基因组文库, 以获得(CA)n微卫星位点。勒氏笛鲷基因组DNA经限制性内切酶HaeⅢ+ DraⅠ双酶切后, 连接T-载体克隆, 构建基因组文库。以通用引物M13+/-与重复序列引物(CA)15对基因组文库进行筛选, 二次筛选后得到121个可能含有微卫星位点的阳性克隆。进行序列测定, 共获得53个CA(n≥7)重复序列, 重复次数主要分布于7~15(80.77%)。在所得微卫星序列中, 重复单元除CA外, 还观察到单碱基、三碱基、四碱基、五碱基重复单元。根据侧翼序列设计48对引物, 通过优化PCR反应条件, 可获得清晰可重复的目的条带。研究旨在为勒氏笛鲷遗传多样性研究及遗传图谱的构建等奠定基础, 为勒氏笛鲷资源的合理开发利用提供参考。  相似文献   

19.
In comparison of amino acid sequences of 4 kringles of both macrophage stimulating protein (MSP) and hepatocyte growth factor (HGF), consensus motif sequence was determined. According to this consensus sequence, a pair of universal primers were designed. In combination with specific upstream or downstream primer of MSP or HGF respectively, serial fragments containing variant number of kringle (from 1 to 4) can be obtained by once PCR. By ligating the C terminal and N terminal fragments with different combination, serial deletants and chimeras of MSP and HGF were constructed. Sequence analysis showed that the degeneracy for universal primers and the sequences of those constructed deletants and chimeras are desired. Biological assay of these deletants revealed that wild type MSP can inhibit the growth of some tumor cell lines and that kringle 1 of MSP is essential for function as that of HGF.  相似文献   

20.
This study reports the occurrence of highly conserved d-loop sequences in the mitochondrial genome of the woolly mouse opossum genus Marmosa subgenus Micoureus (Mammalia, Didelphimorphia, Didelphidae). Sixty-six sequences of Marmosa (Micoureus) demerarae, Marmosa (Micoureus) constantiae, and Marmosa (Micoureus) paraguayanus were amplified using universal d-loop primers and virtually no genetic differences were detected within and among species. These sequences matched the control region of the mitochondrial marsupial genome. Analyses of qualitative aspects of these sequences revealed that their structural composition is very similar to the d-loop region of other didelphid species. However, the total lack of variability has not been reported from other closely related species. The data analyzed here support the occurrence of highly conserved d-loop sequences, and we found no support for the hypothesis that these sequences are d-loop-like nuclear pseudogenes. Furthermore, the control and flanking regions obtained with different primers corroborate the lack of variability of the d-loop sequences in the mitochondrial genome of Marmosa (Micoureus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号