首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peroxisome proliferator-activated receptor (PPAR)-alpha is a member of a large nuclear receptor superfamily whose main role is to activate genes involved in fatty acid oxidation in the liver, heart, kidney, and skeletal muscle. While currently used mainly as hypolipidemic agents, the cardiac effects and anti-inflammatory actions of PPAR-alpha agonists in arterial wall cells suggest other potential cardioprotective and antiatherosclerotic effects of these agents. This review summarizes current knowledge regarding the effects of PPAR-alpha agonists on lipid and lipoprotein metabolism, the heart, and the vessel wall and introduces some of the insights gained in these areas from studying PPAR-alpha-deficient mice. The introduction of new and more potent PPAR-alpha agonists will provide important insights into the overall benefits of activating PPAR-alpha clinically for the treatment of dyslipidemia and prevention of vascular disease.  相似文献   

2.
3.
The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non-cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences.  相似文献   

4.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that heterodimerize with the retinoid X receptor and then modulate the function of many target genes. Three PPARs are known: alpha, beta/delta, and gamma. The better known are PPAR-alpha and PPAR-gamma, which may be activated by different synthetic agonists, although the endogenous ligands are unknown. PPAR-alpha is involved in fatty acid oxidation and expressed in the liver, kidney, and skeletal muscle, whereas PPAR-gamma is involved in fat cell differentiation, lipid storage, and insulin sensitivity. However, both have been shown to be present in variable amounts in cardiovascular tissues, including endothelium, smooth muscle cells, macrophages, and the heart. The activators of PPAR-alpha (fibrates) and PPAR-gamma (thiazolidinediones or glitazones) antagonized the actions of angiotensin II in vivo and in vitro and exerted cardiovascular antioxidant and anti-inflammatory effects. PPAR activators lowered blood pressure, induced favorable effects on the heart, and corrected vascular structure and endothelial dysfunction in several rodent models of hypertension. Activators of PPARs may become therapeutic agents useful in the prevention of cardiovascular disease beyond their effects on carbohydrate and lipid metabolism. Some side effects, such as weight gain, as well as documented aggravation of advanced heart failure through fluid retention by glitazones, may, however, limit their therapeutic application in prevention of cardiovascular disease.  相似文献   

5.
6.
Amides of fatty acids with ethanolamine (FAE) are biologically active lipids that participate in a variety of biological functions, including the regulation of feeding. The polyunsaturated FAE anandamide (arachidonoylethanolamide) increases food intake by activating G protein-coupled cannabinoid receptors. On the other hand, the monounsaturated FAE oleoylethanolamide (OEA) reduces feeding and body weight gain by activating the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor alpha). In the present report, we examined whether OEA can also influence energy utilization. OEA (1-20 microm) stimulated glycerol and fatty acid release from freshly dissociated rat adipocytes in a concentration-dependent and structurally selective manner. Under the same conditions, OEA had no effect on glucose uptake or oxidation. OEA enhanced fatty acid oxidation in skeletal muscle strips, dissociated hepatocytes, and primary cardiomyocyte cultures. Administration of OEA in vivo (5 mg kg(-1), intraperitoneally) produced lipolysis in both rats and wild-type mice, but not in mice in which PPAR-alpha had been deleted by homologous recombination (PPAR-alpha(-/-)). Likewise, OEA was unable to enhance lipolysis in adipocytes or stimulate fatty acid oxidation in skeletal muscle strips isolated from PPAR-alpha mice. The synthetic PPAR-alpha agonist Wy-14643 produced similar effects, which also were dependent on the presence of PPAR-alpha. Subchronic treatment with OEA reduced body weight gain and triacylglycerol content in liver and adipose tissue of diet-induced obese rats and wild-type mice, but not in obese PPAR-alpha(-/-) mice. The results suggest that OEA stimulates fat utilization through activation of PPAR-alpha and that this effect may contribute to its anti-obesity actions.  相似文献   

7.
8.
Glia are key players in a number of nervous system disorders. Besides releasing glial and neuronal signaling molecules directed to cellular homeostasis, glia respond also to pro-inflammatory signals released from immune-related cells, with the mast cell being of particular interest. A proposed mast cell–glia communication may open new perspectives for designing therapies to target neuroinflammation by differentially modulating activation of non-neuronal cells normally controlling neuronal sensitization—both peripherally and centrally. Mast cells and glia possess endogenous homeostatic mechanisms/molecules that can be upregulated as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamines, whose principal family members are the endocannabinoid N-arachidonoylethanolamine (anandamide), and its congeners N-stearoylethanolamine, N-oleoylethanolamine, and N-palmitoylethanolamine (PEA). A key role of PEA may be to maintain cellular homeostasis when faced with external stressors provoking, for example, inflammation: PEA is produced and hydrolyzed by microglia, it downmodulates mast cell activation, it increases in glutamate-treated neocortical neurons ex vivo and in injured cortex, and PEA levels increase in the spinal cord of mice with chronic relapsing experimental allergic encephalomyelitis. Applied exogenously, PEA has proven efficacious in mast cell-mediated experimental models of acute and neurogenic inflammation. This fatty acid amide possesses also neuroprotective effects, for example, in a model of spinal cord trauma, in a delayed post-glutamate paradigm of excitotoxic death, and against amyloid β-peptide-induced learning and memory impairment in mice. These actions may be mediated by PEA acting through “receptor pleiotropism,” i.e., both direct and indirect interactions of PEA with different receptor targets, e.g., cannabinoid CB2 and peroxisome proliferator-activated receptor-alpha.  相似文献   

9.
Oleoylethanolamide (OEA) is a lipid mediator belonging to the fatty acid ethanolamides family. It is produced by intestine and adipose tissue. It inhibits food intake and body weight gain, and has hypolipemiant action in vivo, as well as a lipolytic effect in vitro. OEA is a PPAR-alpha agonist, and recently it has been found that OEA is an endogenous ligand of an orphan receptor. Previously, we have shown that OEA inhibits insulin-stimulated glucose uptake in isolated adipocytes, and produces glucose intolerance in rats. In the present work, we have studied another insulin target cell, the hepatocyte using a rat hepatoma cell line (HTC), and we have studied the cross-talk of OEA signalling with metabolic and mitotic signal transduction of insulin receptor. OEA dose-dependently activates JNK and p38 MAPK, and inhibits insulin receptor phosphorylation. OEA inhibits insulin receptor activation, blunting insulin signalling in the downstream PI3K pathway, decreasing phosphorylation of PKB and its target GSK-3. OEA also inhibits insulin-dependent MAPK pathway, as assessed by immunoblot of phosphorylated MEK and MAPK. These effects were reversed by blocking JNK or p38 MAPK using pharmacological inhibitors (SP 600125, and SB 203580). Since OEA is an endogenous PPAR-alpha agonist, we investigated whether a pharmacologic agonist (WY 14643) may mimic the OEA effect on insulin receptor signalling. Activation of PPAR-alpha by the pharmacological agonist WY14643 in HTC hepatoma cells is sufficient to inhibit insulin signalling and this effect is also dependent on p38 MAPK but not JNK kinase. In summary, OEA inhibits insulin metabolic and mitogenic signalling by activation of JNK and p38 MAPK via PPAR-alpha.  相似文献   

10.
11.
12.
Emerging evidence indicates that astrogliosis is involved in the pathogenesis of neurodegenerative disorders. Our previous findings suggested cannabinoids and Autacoid Local Injury Antagonism Amides (ALIAmides) attenuate glial response in models of neurodegeneration. The present study was aimed at exploring palmitoylethanolamide (PEA) ability to mitigate β-amyloid (Aβ)-induced astrogliosis. Experiments were carried out to investigate PEA's (10(-7) M) effects upon the expression and release of pro-inflammatory molecules in rat primary astrocytes activated by soluble Aβ(1-42) (1 μg/ml) as well as to identify mechanisms responsible for such actions. The effects of Aβ and exogenous PEA on the astrocyte levels of the endocannabinoidsand of endogenous ALIAmides were also studied. The peroxisome proliferator-activated receptor (PPAR)-α (MK886, 3 μM) or PPAR-γ (GW9662, 9 nM) antagonists were co-administered with PEA. Aβ elevated endogenous PEA and d5-2-arachidonoylglycerol (2-AG) levels. Exogenous PEA blunted the Aβ-induced expression of pro-inflammatory molecules. This effect was reduced by PPAR-α antagonist. Moreover, this ALIAmide, like Aβ, increased 2-AG levels. These results indicate that PEA exhibits anti-inflammatory properties able to counteract Aβ-induced astrogliosis, and suggest novel treatment for neuroinflammatory/ neurodegenerative processes.  相似文献   

13.
In human embryonic kidney cells over-expressing the human vanilloid receptor type 1 (VR1), palmitoylethanolamide (PEA, 0.5-10 microM) enhanced the effect of arachidonoylethanolamide (AEA, 50 nM) on the VR1-mediated increase of the intracellular Ca2+ concentration. PEA (5 microM) decreased the AEA half-maximal concentration for this effect from 0.44 to 0.22 microM. The PEA effect was not due to inhibition of AEA hydrolysis or adhesion to non-specific sites, since bovine serum albumin (0.01-0.25%) potently inhibited AEA activity, and PEA also enhanced the effect of low concentrations of the VR1 agonists resiniferatoxin and capsaicin. PEA (5 microM) enhanced the affinity of AEA for VR1 receptors as assessed in specific binding assays. These data suggest that PEA might be an endogenous enhancer of VR1-mediated AEA actions.  相似文献   

14.
Although its presence in mammalian tissues has been known since the 1960s, N-palmitoyl-ethanolamine (PEA) has emerged only recently among other bioactive N-acylethanolamines as an important local pro-homeostatic mediator which, due to its chemical stability, can be also administered exogenously as the active principle of current anti-inflammatory and analgesic preparations (e.g. Normast®, Pelvilen®). Much progress has been made towards the understanding of the mechanisms regulating both the tissue levels of PEA under physiological and pathological conditions, and its pharmacological actions. Here we review these new developments in PEA biochemistry and pharmacology, and discuss novel potential indications for the therapeutic use of this compound and of synthetic tools that selectively retard its catabolism, such as the inhibitors of the recently cloned N-acylethanolamine-hydrolyzing acid amidase.  相似文献   

15.
Pharmacological administration of the natural lipid amide, oleoylethanolamide (OEA), inhibits food intake in free-feeding rodents by prolonging latency to feed and postmeal interval. This anorexic effect is mediated by activation of type-alpha peroxisome proliferator-activated receptors (PPAR-alpha). Food intake stimulates mucosal cells in duodenum and jejunum to generate OEA, suggesting that this lipid-derived messenger may act as a local satiety hormone. As a test of this hypothesis, here, we examined whether targeted enhancement of OEA production in the small intestine affects feeding behavior in rats. We constructed an adenoviral vector (Ad-NPLD) that directs overexpression of the enzyme N-acylphosphatidylethanolamine (NAPE)-phospholipase D (PLD), which catalyzes the hydrolysis of NAPE to generate OEA. Intraduodenal injection of the Ad-NPLD vector resulted in a time-dependent increase in NAPE-PLD expression and OEA production, which was restricted to the proximal small intestine. No such effect was observed after administration of a control adenoviral vector. Enhanced OEA production in Ad-NPLD-injected animals was temporally associated with increased expression of two PPAR-alpha target genes (PPAR-alpha and CD36) and with decreased food intake. The hypophagic phenotype of Ad-NPLD-injected rats was attributable to increase feeding latency and postmeal interval, rather than decreased meal size. The results suggest that localized changes in OEA production in the small intestine, such as those produced by food intake, are sufficient to induce in rats a state of across-meal satiety similar to that elicited by systemic administration of exogenous OEA.  相似文献   

16.
17.
Burstein S 《Life sciences》2005,77(14):1674-1684
An increasing number of cannabinoid actions are being reported that do not appear to be mediated by either CB1 or CB2, the known cannabinoid receptors. One such example is the synthetic analog ajulemic acid (AJA), which shows potent analgesic and anti-inflammatory effects in rodents and humans. AJA binds weakly to CB1 only at concentrations many fold higher than its therapeutic range, and is, therefore, completely free of psychotropic effects in both normal subjects and pain patients suggesting the involvement of a target site other than CB1. AJA as well as several other cannabinoids appear to have profound effects on cellular lipid metabolism as evidenced by their ability to transform fibroblasts into adipocytes where the accumulation of lipid droplets can be readily observed. Such transformations can be mediated by the activation of the nuclear receptor PPAR-gamma. A variety of small molecule ligands including AJA have been shown to induce the activation of PPAR-gamma and, in some cases this has led to the introduction of clinically useful agents. It is suggested that PPAR-gamma may serve a receptor function for certain actions of some cannabinoids.  相似文献   

18.
19.
Pain is one of the cardinal signs of inflammation and is present in many inflammatory conditions. Therefore, anti-inflammatory drugs such as NSAIDs also have analgesic properties. We previously showed that prostaglandin D2-glycerol ester (PGD2-G), endogenously produced by cyclooxygenase-2 from the endocannabinoid 2-arachidonoylglycerol, has anti-inflammatory effects in vitro and in vivo that are partly mediated by DP1 receptor activation. In this work, we investigated its effect in a model of carrageenan-induced inflammatory pain. PGD2-G decreased hyperalgesia and edema, leading to a faster recovery. Moreover, PGD2-G decreased carrageenan-induced inflammatory markers in the paw as well as inflammatory cell recruitment. The effects of PGD2-G were independent from metabolite formation (PGD2 and 15d-PGJ2-G) or DP1 receptor activation in this model. Indeed PGD2 delayed recovery from hyperalgesia while 15d-PGJ2-G worsened the edema. However, while PGD2-G decreased hyperalgesia in this model of inflammatory pain, it had no effect when tested in the capsaicin-induced pain model. While the targets mediating the effects of this bioactive lipid in inflammatory pain remain to be elucidated, our findings further support the interest of anti-inflammatory lipid mediators in the management of inflammatory pain.  相似文献   

20.
Fatty liver disease (FLD), whether it is alcoholic FLD (AFLD) or nonalcoholic FLD (NAFLD), encompasses a morphological spectrum consisting of hepatic steatosis (fatty liver) and steatohepatitis. FLD has the inherent propensity to progress toward the development of cirrhosis and hepatocellular carcinoma. It is generally difficult to distinguish AFLD from NAFLD on morphological grounds alone despite the distinctions implied by these etiological designations. The indistinguishable spectrum of histological features of both AFLD and NAFLD suggests a possible convergence of pathogenetic mechanisms at some critical juncture that enables the progression of steatohepatitis toward cirrhosis and liver cancer. From a pathogenetic perspective, FLD may be considered a single disease with multiple etiologies. Excess energy consumption and reduced energy combustion appear to be critical events that culminate in lipid storage in the liver. Energy combustion in the liver is controlled by peroxisome proliferator-activated receptor (PPAR)-alpha-regulated mitochondrial and peroxisomal fatty acid beta-oxidation systems and the microsomal omega-oxidation system. PPAR-alpha, a receptor for peroxisome proliferators, functions as a sensor for fatty acids (lipid sensor), and ineffective PPAR-alpha sensing can lead to reduced energy burning resulting in hepatic steatosis and steatohepatitis. Delineation of the pathogenetic aspects of FLD is necessary for developing novel therapeutic strategies for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号