首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatoma-derived growth factor (HDGF) was previously identified as a developmentally regulated cardiovascular and renal gene that is mitogenic for vascular smooth muscle and aortic endothelial cells. As reciprocal interactions of smooth muscle and endothelial cells are necessary for vascular formation, we examined whether HDGF plays a role in angiogenesis. According to immunohistochemistry, HDGF was highly expressed in endothelial cells of nonmuscularized, forming blood vessels of the fetal lung. HDGF was also expressed in endothelial cells of small (20 microm) mature arteries and veins. By Western immunoblotting, HDGF was highly expressed by human pulmonary microvascular endothelial cells in vitro. Adenoviral overexpression of HDGF was mitogenic for human pulmonary microvascular endothelial cells in serum-free medium, stimulating a 1.75-fold increase in bromodeoxyuridine (BrdU) uptake and a twofold increase in cell migration. With the chick chorioallantoic membrane (CAM), a biologic assay for angiogenesis, exogenous recombinant HDGF significantly stimulated blood vessel formation and a dose-dependent reorganization of cells within the CAM into a more compact, linear alignment reminiscent of tube formation. According to double immunostaining for endothelial cells with a transforming growth factor-betaII receptor antibody and BrdU as a marker of cell proliferation, exogenous HDGF selectively stimulated endothelial cell BrdU uptake. HDGF also activated specific ERK1/2 signaling and did not overlap with VEGF SAPK/JNK, Akt-mediated pathways. We conclude that HDGF is a highly expressed vascular endothelial cell protein in vivo and is a potent endothelial mitogen and regulator of endothelial cell migration by mechanisms distinct from VEGF.  相似文献   

2.
Leptin, a 16 kDa non-glycolated polypeptide of 146 amino acids produced by the ob gene, has a variety of physiological roles not only in lipid metabolism, hematopoiesis, thermogenesis and ovarian function, but also in angiogenesis. This study focuses to investigate the possibility that leptin, as an angiogenic factor, may regulate the angiogenesis during tooth development. We firstly studied the expression of leptin and vascular endothelial growth factor (VEGF) during tooth development immunohistochemically. This investigation revealed that leptin is expressed in ameloblasts, odontoblasts, dental papilla cells and stratum intermedium cells. This expression pattern was similar to that of VEGF, one of the most potent angiogenic factors. Interestingly, more leptin-positive cells were observed in the upper third portion of dental papilla, which is closest to odontoblastic layer, compared to middle and lower thirds. Moreover, in the dental papilla, more CD31 and/or CD34-positive vascular endothelial cells were observed in the vicinity of ameloblasts and odontoblasts expressing leptin and VEGF. These findings strongly suggest that ameloblasts, odontoblasts and dental papilla cells induce the angiogenesis in tooth germs by secretion of leptin as well as VEGF.  相似文献   

3.
The different members of the vascular endothelial growth factor (VEGF) family act as key regulators of endothelial cell function controlling vasculogenesis, angiogenesis, vascular permeability and endothelial cell survival. In this study, we have functionally characterized a novel member of the VEGF family, designated VEGF-E. VEGF-E sequences are encoded by the parapoxvirus Orf virus (OV). They carry the characteristic cysteine knot motif present in all mammalian VEGFs, while forming a microheterogenic group distinct from previously described members of this family. VEGF-E was expressed as the native protein in mammalian cells or as a recombinant protein in Escherichia coli and was shown to act as a heat-stable, secreted dimer. VEGF-E and VEGF-A were found to possess similar bioactivities, i.e. both factors stimulate the release of tissue factor (TF), the proliferation, chemotaxis and sprouting of cultured vascular endothelial cells in vitro and angiogenesis in vivo. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation and a biphasic rise in free intracellular Ca2+ concentration, whilst in contrast to VEGF-A, VEGF-E did not bind to VEGF receptor-1 (Flt-1). VEGF-E is thus a potent angiogenic factor selectively binding to VEGF receptor-2. These data strongly indicate that activation of VEGF receptor-2 alone can efficiently stimulate angiogenesis.  相似文献   

4.
Vascular endothelial growth factor receptor-3 (VEGFR-3) is constitutively expressed in lymphatic vessels and transiently in endothelial cells of blood vessels during angiogenesis. Here we report that VEGFR-3 localizes in the caveolae membrane of endothelial cells and co-immunoprecipitates with caveolin-1. Caveolin-1 silencing or its depletion from the cell membrane by cholesterol increases VEGFR-3 autophosphorylation, suggesting that caveolin acts as a negative regulator of VEGFR-3 activity. Receptor activation induces caveolin-1 phosphorylation on tyrosine residues including tyrosine 14. Cell treatment with Src or Abl inhibitors PP2 or STI571, prior to receptor stimulation, affects caveolin-1 phosphorylation without affecting receptor autophosphorylation, suggesting that both Src and Abl are involved in VEGFR-3-dependent caveolin-1 phosphorylation. Caveolin-1 phosphorylation in Src/Fyn/Yes knockout cells demonstrated that Abl phosphorylates caveolin-1 independently from Src family members. These results suggest a functional interaction between VEGFR-3 and caveolin-1 to modulate endothelial cell activation during angiogenesis.  相似文献   

5.
CEA-related cell adhesion molecule 1 (CEACAM1) exhibits angiogenic properties in in vitro and in vivo angiogenesis assays. CEACAM1 purified from granulocytes and endothelial cell media as well as recombinant CEACAM1 expressed in HEK293 cells stimulate proliferation, chemotaxis, and capillary-like tube formation of human microvascular endothelial cells. They increase vascularization of chick chorioallantoic membrane and potentiate the effects of vascular endothelial growth factor (VEGF)165. VEGF165 increases CEACAM1 expression both on the mRNA and the protein level. VEGF165-induced endothelial tube formation is blocked by a monoclonal CEACAM1 antibody. These data suggest that CEACAM1 is a major effector of VEGF in the early microvessel formation. Since CEACAM1 is expressed in tumor microvessels but not in large blood vessels, CEACAM1 may be a target for the inhibition of tumor angiogenesis.  相似文献   

6.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.  相似文献   

7.

Background  

Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing) and pathological conditions (tumour development). Vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) are the major angiogenic regulators. We have identified a natural product (cheiradone) isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation) and in vivo (the chick chorioallantoic membrane) models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50) was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated.  相似文献   

8.
Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes, involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10 ng/mL) produced an approximately 11.8-fold increase of FS mRNA. FS or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12 h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FSin vitro.  相似文献   

9.
Vascular endothelial growth factor receptor-3 (VEGFR-3) has an essential role in the development of embryonic blood vessels; however, after midgestation its expression becomes restricted mainly to the developing lymphatic vessels. The VEGFR-3 ligand VEGF-C stimulates lymphangiogenesis in transgenic mice and in chick chorioallantoic membrane. As VEGF-C also binds VEGFR-2, which is expressed in lymphatic endothelia, it is not clear which receptors are responsible for the lymphangiogenic effects of VEGF-C. VEGF-D, which binds to the same receptors, has been reported to induce angiogenesis, but its lymphangiogenic potential is not known. In order to define the lymphangiogenic signalling pathway we have created transgenic mice overexpressing a VEGFR-3-specific mutant of VEGF-C (VEGF-C156S) or VEGF-D in epidermal keratinocytes under the keratin 14 promoter. Both transgenes induced the growth of lymphatic vessels in the skin, whereas the blood vessel architecture was not affected. Evidence was also obtained that these growth factors act in a paracrine manner in vivo. These results demonstrate that stimulation of the VEGFR-3 signal transduction pathway is sufficient to induce specifically lymphangiogenesis in vivo.  相似文献   

10.
血管内皮细胞生长因子(vascular endothelial growth factor,VEGF或VEGF-A),又称为血管通透因子(vascular permeable factor,VPF)是一种具有多种功能的生物大分子,它是分泌性糖蛋白生长因子超家族中的一员.VEGF主要通过两个高亲和力的酪氨酸激酶受体来传递各种信号:VEGF受体1和2(VEGFR1,VEGFR2),从而引起细胞的多种生理反应.在胚胎时期,VEGF可以促进血管内皮细胞的增殖、迁移、管状形成和提高内皮细胞的存活率,对于血管新生和发育十分关键;而在成体时期,VEGF则主要参与正常血管结构的维持,并调节生理和病理性血管新生.近几年来的临床试验表明,使用多种阻断VEGF作用的抑制剂能有效促进肿瘤血管的退化和减小肿瘤的体积,但是同时在部分病人中也观察到了多方面的副作用.这些结果显示,VEGF也具有非血管新生方面的重要功能.因此,在研制基于拮抗VEGF作用的抗癌药物时,这些功能更不容忽视.研究表明,在成体的小肠、胰岛、甲状腺、肾脏和肝脏等器官组织中,VEGF都发挥着十分重要的作用,如果VEGF水平降低,这些器官组织的毛细血管网状结构将部分退化.VEGF还可以促进骨髓形成、组织修复与再生、促进卵巢囊泡成熟,并且参与血栓、炎症反应和缺氧缺血的病理过程.本文主要对VEGF在血管新生之外的功能及其分子机制进行了简要探讨.  相似文献   

11.
It is generally accepted that n-3 polyunsaturated fatty acids have beneficial effects on vascular homeostasis. Among the several functions of endothelial cells, angiogenesis contributes to tumor growth, inflammation, and microangiopathy. We have already demonstrated that eicosapentaenoic acid (EPA, 20:5, n-3) suppressed angiogenesis. In this paper, we examined the effect of docosapentaenoic acid (DPA, 22:5, n-3), an elongated metabolite of EPA, on tube-forming activity in bovine aortic endothelial cells (BAE cells) incubated between type I collagen gels. The pretreatment of BAE cells with DPA suppressed tube-forming activity induced by vascular endothelial growth factor (VEGF). The effect of DPA was stronger than those of EPA and docosahexaenoic acid (22:6, n-3). The migrating activity of endothelial cells stimulated with VEGF was also suppressed by DPA pretreatment. The treatment of BAE cells with DPA caused the suppression of VEGF receptor-2 (VEGFR-2, the kinase insert domain-containing receptor, KDR) expression in both plastic dish and collagen gel cultures. These data indicate that DPA has a potent inhibitory effect on angiogenesis through the suppression of VEGFR-2 expression.  相似文献   

12.
To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with green fluorescence protein (GFP)-actin and GFP-caveolin-1. SK Hep1 cells had pores; some of which appeared to be fenestrations (diameter 55 +/- 28 nm, porosity 2.0 +/- 1.4%), rudimentary sieve plates, bristle-coated micropinocytotic vesicles and expressed caveolin-1, von Willebrand factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase and clathrin, but not CD31. There was avid uptake of formaldehyde serum albumin, consistent with endocytosis. Vascular endothelial growth factor caused an increase in porosity to 4.8 +/- 2.6% (P < 0.01) and pore diameter to 104 +/- 59 nm (P < 0.001). GFP-actin was expressed throughout the cells, whereas GFP-caveolin-1 had a punctate appearance; both responded to vascular endothelial growth factor by contraction toward the nucleus over hours in parallel with the formation of fenestrations. SK Hep1 cells resemble liver sinusoidal endothelial cells, and the vascular endothelial growth factor-induced formation of fenestration-like pores is preceded by contraction of actin cytoskeleton and attached caveolin-1 toward the nucleus.  相似文献   

13.
Epidermal growth factor‐like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly‐forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7+ endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances. genesis 52:657–670, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

15.
Basic fibroblast growth factor (FGF) has been shown previously to be present in the chick embryonic limb during early stages of its development, at which time the limb mesodermal cells are proliferating within a hyaluronan-rich extracellular matrix. In this study, basic FGF was found to stimulate hyaluronan synthesis and production of hyaluronan-dependent pericellular coats by mesodermal cells from the chick embryo limb; acidic FGF, platelet-derived growth factor, epidermal growth factor, and retinoic acid either had a much smaller effect than basic FGF or an inhibitory effect. Transforming growth factor-beta stimulated hyaluronan synthesis and coat formation but, unlike basic FGF, this factor also stimulated chondroitin sulfate production by the mesodermal cells.  相似文献   

16.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

17.
Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two-to threefold) and secretion (1.8-to 2.8-fold) of VEGF reaching maximal levels between 4–8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma.  相似文献   

18.
Vascular permeability is a hallmark response to the main angiogenic factor VEGF-A and we have previously described a reduction of this response in Shb knockout mice. To characterize the molecular mechanisms responsible for this effect, endothelial cells were isolated from lungs and analyzed in vitro. Shb deficient endothelial cells exhibited less migration in a scratch wound-healing assay both under basal conditions and after vascular endothelial growth factor-A (VEGF-A) stimulation, suggesting a functional impairment of these cells in vitro. Staining for VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR-2) showed co-localization in adherens junctions and in intracellular sites such as the perinuclear region in wild-type and Shb knockout cells. VEGF-A decreased the VE-cadherin/VEGFR-2 co-localization in membrane structures resembling adherens junctions in wild-type cells whereas no such response was noted in the Shb knockout cells. VE-cadherin/VEGFR-2 co-localization was also recorded using spinning-disk confocal microscopy and VEGF-A caused a reduced association in the wild-type cells whereas the opposite pattern was observed in the Shb knockout cells. The latter expressed slightly more of cell surface VEGFR-2. VEGF-A stimulated extracellular-signal regulated kinase, Akt and Rac1 activities in the wild-type cells whereas no such responses were noted in the knockout cells. We conclude that aberrant signaling characteristics with respect to ERK, Akt and Rac1 are likely explanations for the observed altered pattern of VE-cadherin/VEGFR-2 association. The latter is important for understanding the reduced in vivo vascular permeability response in Shb knockout mice, a phenomenon that has patho-physiological relevance.  相似文献   

19.
We previously demonstrated that cyclic stretch of cardiac myocytes activates paracrine signaling via vascular endothelial growth factor (VEGF) leading to angiogenesis. The present study tested the hypothesis that cyclic stretch upregulates tyrosine kinase receptors in rat coronary microvascular endothelial cells (RCMEC) and human umbilical vein endothelial cells (HUVEC). VEGF receptor-2 (Flk-1) protein levels increased in HUVEC and RCMEC in a time-dependent manner, but the increase occurred much earlier in RCMEC than in HUVEC. The enhancement of Flk-1 protein level was not inhibited by addition of VEGF neutralizing antibodies, indicating that VEGF is not involved in stretch-induced Flk-1 expression. VEGF receptor-1 (Flt-1) protein and mRNA were not changed by stretch. However, Tie-2 and Tie-1 protein levels increased in RCMEC. Angiopoietin-1 and -2, the ligands for Tie-2, increased in cardiac myocytes subjected to cyclic stretch but were not affected by stretch in endothelial cells (EC). Stretch or incubation of RCMEC with VEGF increased cell proliferation moderately, whereas stretch + VEGF had an additive effect on proliferation. Mechanical stretch induces upregulation of the key tyrosine kinase receptors Flk-1, Tie-2, and Tie-1 in vascular EC, which underlies the increase in sensitivity of EC to growth factors and, therefore, facilitates angiogenesis. These in vitro findings support the concept that stretch of cardiac myocytes and EC plays a key role in coronary angiogenesis.  相似文献   

20.
The Kruppel-like factor KLF2 was recently identified as a novel regulator of endothelial pro-inflammatory and pro-thrombotic function. Here it is shown that overexpression of KLF2 potently inhibits vascular permeability factor/vascular endothelial growth factor (VEGF-A)-mediated angiogenesis and tissue edema in the nude ear mouse model of angiogenesis. In vitro, KLF2 expression retards VEGF-mediated calcium flux, proliferation and induction of pro-inflammatory factors in endothelial cells. This effect is due to a potent inhibition of VEGFR2/KDR expression and promoter activity. These observations identify KLF2 as a regulator of VEGFR2/KDR and provide a foundation for novel approaches to regulate angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号