首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Trypanosoma brucei is the causative agent of African sleeping sickness. Current work for the development of new drugs against this pathology includes evaluation of enzymes of the pentose phosphate pathway (PPP), which first requires a clear understanding of their function and mechanism of action. In this context, we focused on T. brucei 6-phosphogluconolactonase (Tb6PGL), which converts δ-6-phosphogluconolactone into 6-phosphogluconic acid in the second step of the PPP. We have determined the crystal structure of Tb6PGL in complex with two ligands, 6-phosphogluconic acid and citrate, at 2.2 Å and 2.0 Å resolution, respectively. We have performed molecular dynamics (MD) simulations on Tb6PGL in its empty form and in complex with δ-6-phosphogluconolactone, its natural ligand. Analysis of the structural data and MD simulations allowed us to propose a detailed enzymatic mechanism for 6PGL enzymes.  相似文献   

3.
Adenosine 5'-monophosphate (AMP) inhibits muscle fructose 1,6-bisphosphatase (FBPase) about 44 times stronger than the liver isozyme. The key role in strong AMP binding to muscle isozyme play K20, T177 and Q179. Muscle FBPase which has been mutated towards the liver enzyme (K20E/T177M/Q179C) is inhibited by AMP about 26 times weaker than the wild-type muscle enzyme, but it binds the fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP), similarly to the wild-type liver enzyme. The reverse mutation of liver FBPase towards the muscle isozyme significantly increases the affinity of the mutant to TNP-AMP. High affinity to the inhibitor but low sensitivity to AMP of the liver triple mutant suggest differences between the isozymes in the mechanism of allosteric signal transmission.  相似文献   

4.

Background

Fructose-1,6-bisphosphatase, a major enzyme of gluconeogenesis, is inhibited by AMP, Fru-2,6-P2 and by high concentrations of its substrate Fru-1,6-P2. The mechanism that produces substrate inhibition continues to be obscure.

Methods

Four types of experiments were used to shed light on this: (1) kinetic measurements over a very wide range of substrate concentrations, subjected to detailed statistical analysis; (2) fluorescence studies of mutants in which phenylalanine residues were replaced by tryptophan; (3) effect of Fru-2,6-P2 and Fru-1,6-P2 on the exchange of subunits between wild-type and Glu-tagged oligomers; and (4) kinetic studies of hybrid forms of the enzyme containing subunits mutated at the active site residue tyrosine-244.

Results

The kinetic experiments with the wild-type enzyme indicate that the binding of Fru-1,6-P2 induces the appearance of catalytic sites with lower affinity for substrate and lower catalytic activity. Binding of substrate to the high-affinity sites, but not to the low-affinity sites, enhances the fluorescence emission of the Phe219Trp mutant; the inhibitor, Fru-2,6-P2, competes with the substrate for the high-affinity sites. Binding of substrate to the low-affinity sites acts as a “stapler” that prevents dissociation of the tetramer and hence exchange of subunits, and results in substrate inhibition.

Conclusions

Binding of the first substrate molecule, in one dimer of the enzyme, produces a conformational change at the other dimer, reducing the substrate affinity and catalytic activity of its subunits.

General significance

Mimics of the substrate inhibition of fructose-1,6-bisphosphatase may provide a future option for combatting both postprandial and fasting hyperglycemia.  相似文献   

5.
The crystal structure of recombinant ferritin from Helicobacter pylori has been determined in its apo, low-iron-bound, intermediate, and high-iron-bound states. Similar to other members of the ferritin family, the bacterial ferritin assembles as a spherical protein shell of 24 subunits, each of which folds into a four-α-helix bundle. Significant conformational changes were observed at the BC loop and the entrance of the 4-fold symmetry channel in the intermediate and high-iron-bound states, whereas no change was found in the apo and low-iron-bound states. The imidazole rings of His149 at the channel entrance undergo conformational changes that bear resemblance to heme configuration and are directly coupled to axial translocation of Fe ions through the 4-fold channel. Our results provide the first structural evidence of the translocation of Fe ions through the 4-fold channel in prokaryotes and the transition from a protein-dominated process to a mineral-surface-dominated process during biomineralization.  相似文献   

6.
Phosphofructokinase 1 (PFK) is a multisubunit allosteric enzyme that catalyzes the principal regulatory step in glycolysis—the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate by ATP. The activity of eukaryotic PFK is modulated by a number of effectors in response to the cell's needs for energy and building blocks for biosynthesis. The crystal structures of eukaryotic PFKs—from Saccharomyces cerevisiae and rabbit skeletal muscle—demonstrate how successive gene duplications and fusion are reflected in the protein structure and how they allowed the evolution of new functionalities. The basic framework inherited from prokaryotes is conserved, and additional levels of structural and functional complexity have evolved around it. Analysis of protein-ligand complexes has shown how PFK is activated by fructose 2,6-bisphosphate (a powerful PFK effector found only in eukaryotes) and reveals a novel nucleotide binding site. Crystallographic results have been used as the basis for structure-based effector design.  相似文献   

7.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), currently infects one-third of the world's population in its latent form. The emergence of multidrug-resistant and extensive drug-resistant strains has highlighted the need for new pharmacological targets within M. tuberculosis. The class IIa fructose 1,6-bisphosphate aldolase (FBA) enzyme from M. tuberculosis (MtFBA) has been proposed as one such target since it is upregulated in latent TB. Since the structure of MtFBA has not been determined and there is little information available on its reaction mechanism, we sought to determine the X-ray structure of MtFBA in complex with its substrates. By lowering the pH of the enzyme in the crystalline state, we were able to determine a series of high-resolution X-ray structures of MtFBA bound to dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and fructose 1,6-bisphosphate at 1.5, 2.1, and 1.3 Å, respectively. Through these structures, it was discovered that MtFBA belongs to a novel tetrameric class of type IIa FBAs. The molecular details at the interface of the tetramer revealed important information for better predictability of the quaternary structures among the FBAs based on their primary sequences. These X-ray structures also provide interesting and new details on the reaction mechanism of class II FBAs. Substrates and products were observed in geometries poised for catalysis; in addition, unexpectedly, the hydroxyl-enolate intermediate of dihydroxyacetone phosphate was also captured and resolved structurally. These concise new details offer a better understanding of the reaction mechanisms for FBAs in general and provide a structural basis for inhibitor design efforts aimed at this class of enzymes.  相似文献   

8.
Cleavage by yeast transketolase of the donor substrate, d-xylulose 5-phosphate, in the absence of the acceptor substrate was studied using stopped-flow spectrophotometry. One mole of the substrate was shown to be cleaved in the prestationary phase, leading to the formation of one mole of the reaction product per mole enzyme, which has two active centers. This observation indicates that only one out of the two active centers functions (i.e., binds and cleaves the substrate) at a time. Such half-of-the-sites reactivity of transketolase conforms well with our understanding, proposed previously, that the active centers of the enzyme operate in sequence (in phase opposition): the cleavage of a ketose within one center (first phase of the transketolase reaction) is paralleled by its formation in the other center (glycolaldehyde residue is condensed with the acceptor substrate, and the second stage of the transketolase reaction is thereby completed) [M.V. Kovina, G.A. Kochetov, FEBS Lett. 440 (1998) 81-84].  相似文献   

9.
The crystal structure of Bifidobacterium longum phosphoketolase, a thiamine diphosphate (TPP) dependent enzyme, has been determined at 2.2 Å resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits with molecular mass of 92.5 kDa. The bound TPP is almost completely shielded from solvent except for the catalytically important C2-carbon of the thiazolium ring, which can be accessed by a substrate sugar through a narrow funnel-shaped channel. In silico docking studies of B. longum phosphoketolase with its substrate enable us to propose a model for substrate binding.

Structured summary

MINT-7985878: PKT (uniprotkb:Q6R2Q7) and PKT (uniprotkb:Q6R2Q7) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

10.
The zinc-dependent leucine aminopeptidase from Pseudomonas putida (ppLAP) is an important enzyme for the industrial production of enantiomerically pure amino acids. To provide a better understanding of its structure-function relationships, the enzyme was studied by X-ray crystallography. Crystal structures of native ppLAP at pH 9.5 and pH 5.2, and in complex with the inhibitor bestatin, show that the overall folding and hexameric organization of ppLAP are very similar to those of the closely related di-zinc leucine aminopeptidases (LAPs) from bovine lens and Escherichia coli. At pH 9.5, the active site contains two metal ions, one identified as Mn2+ or Zn2+ (site 1), and the other as Zn2+ (site 2). By using a metal-dependent activity assay it was shown that site 1 in heterologously expressed ppLAP is occupied mainly by Mn2+. Moreover, it was shown that Mn2+ has a significant activation effect when bound to site 1 of ppLAP. At pH 5.2, the active site of ppLAP is highly disordered and the two metal ions are absent, most probably due to full protonation of one of the metal-interacting residues, Lys267, explaining why ppLAP is inactive at low pH. A structural comparison of the ppLAP-bestatin complex with inhibitor-bound complexes of bovine lens LAP, along with substrate modelling, gave clear and new insights into its substrate specificity and high level of enantioselectivity.  相似文献   

11.
12.
Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d-glycero-d-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.  相似文献   

13.
The crystal structure of the membrane-associated [NiFe] hydrogenase from Allochromatium vinosum has been determined to 2.1 Å resolution. Electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopy on dissolved crystals showed that it is present in the Ni-A state (> 90%). The structure of the A. vinosum [NiFe] hydrogenase shows significant similarities with [NiFe] hydrogenase structures derived from Desulfovibrio species. The amino acid sequence identity is ∼ 50%. The bimetallic [NiFe] active site is located in the large subunit of the heterodimer and possesses three diatomic non-protein ligands coordinated to the Fe (two CN , one CO). Ni is bound to the protein backbone via four cysteine thiolates; two of them also bridge the two metals. One of the bridging cysteines (Cys64) exhibits a modified thiolate in part of the sample. A mono-oxo bridging ligand was assigned between the metal ions of the catalytic center. This is in contrast to a proposal for Desulfovibrio sp. hydrogenases that show a di-oxo species in this position for the Ni-A state. The additional metal site located in the large subunit appears to be a Mg2+ ion. Three iron-sulfur clusters were found in the small subunit that forms the electron transfer chain connecting the catalytic site with the molecular surface. The calculated anomalous Fourier map indicates a distorted proximal iron-sulfur cluster in part of the crystals. This altered proximal cluster is supposed to be paramagnetic and is exchange coupled to the Ni3+ ion and the medial [Fe3S4]+ cluster that are both EPR active (S = 1/2 species). This finding of a modified proximal cluster in the [NiFe] hydrogenase might explain the observation of split EPR signals that are occasionally detected in the oxidized state of membrane-bound [NiFe] hydrogenases as from A. vinosum.  相似文献   

14.
The role of ADP in controlling glycolysis has been examined in a soluble extract of germinating pea seeds. A shortage of ADP appears to retard glycolysis principally by restricting the conversion of phosphopyruvate to pyruvate rather than by restricting formation of phosphoglycerate. Upon addition of ADP to the extract there is an immediate decrease in the concentration of phosphopyruvate accompanied by an increase in pyruvate. Apparently the pyruvate-kinase step shows the most marked response to fluctuations in ADP availability. The glycolytic response to ADP depends on the concentration of ATP magnesium ions. The relation of magnesium-ion availability to adenine-nucleotide control of glycolysis is discussed.  相似文献   

15.
SlyD (sensitive to lysis D; product of the slyD gene) is a prolyl isomerase [peptidyl-prolyl cis/trans isomerase (PPIase)] of the FK506 binding protein (FKBP) type with chaperone properties. X-ray structures derived from three different crystal forms reveal that SlyD from Thermus thermophilus consists of two domains representing two functional units. PPIase activity is located in a typical FKBP domain, whereas chaperone function is associated with the autonomously folded insert-in-flap (IF) domain. The two isolated domains are stable and functional in solution, but the presence of the IF domain increases the PPIase catalytic efficiency of the FKBP domain by 2 orders of magnitude, suggesting that the two domains act synergistically to assist the folding of polypeptide chains. The substrate binding surface of SlyD from T. thermophilus was mapped by NMR chemical shift perturbations to hydrophobic residues of the IF domain, which exhibits significantly reduced thermodynamic stability according to NMR hydrogen/deuterium exchange and fluorescence equilibrium transition experiments. Based on structural homologies, we hypothesize that this is due to the absence of a stabilizing β-strand, suggesting in turn a mechanism for chaperone activity by ‘donor-strand complementation.’ Furthermore, we identified a conserved metal (Ni2+) binding site at the C-terminal SlyD-specific helical appendix of the FKBP domain, which may play a role in metalloprotein assembly.  相似文献   

16.
The dreaded pathogen Staphylococcus aureus is one of the causes of morbidity and mortality worldwide. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), one of the key glycolytic enzymes, is irreversibly oxidized under oxidative stress and is responsible for sustenance of the pathogen inside the host. With an aim to elucidate the catalytic mechanism and identification of intermediates involved, we describe in this study different crystal structures of GAPDH1 from methicillin-resistant S. aureus MRSA252 (SaGAPDH1) in apo and holo forms of wild type, thioacyl intermediate, and ternary complexes of active-site mutants with physiological substrate d-glyceraldehyde-3-phosphate (G3P) and coenzyme NAD+. A new phosphate recognition site, “new Pi” site, similar to that observed in GAPDH from Thermotoga maritima, is reported here, which is 3.40 Å away from the “classical Pi” site. Ternary complexes discussed are representatives of noncovalent Michaelis complexes in the ground state. d-G3P is bound to all the four subunits of C151S.NAD and C151G.NAD in more reactive hydrate (gem-di-ol) form. However, in C151S + H178N.NAD, the substrate is bound to two chains in aldehyde form and in gem-di-ol form to the other two. This work reports binding of d-G3P to the C151G mutant in an inverted manner for the very first time. The structure of the thiaocyl complex presented here is formed after the hydride transfer. The C3 phosphate of d-G3P is positioned at the “Ps” site in the ternary complexes but at the “new Pi” site in the thioacyl complex and C1-O1 bond points opposite to His178 disrupting the alignment between itself and NE2 of His178. A new conformation (Conformation I) of the 209-215 loop has also been identified, where the interaction between phosphate ion at the “new Pi” site and conserved Gly212 is lost. Altogether, inferences drawn from the kinetic analyses and crystal structures suggest the “flip-flop” model proposed for the enzyme mechanism.  相似文献   

17.
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, contains cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes is cruzipain, a cysteine proteinase expressed as a mixture of isoforms, some of them membrane-bound. The enzyme is an immunodominant antigen in human chronic Chagas disease and seems to be important in the host/parasite relationship. Inhibitors of cruzipain kill the parasite and cure infected mice, thus validating the enzyme as a very promising target for the development of new drugs against the disease. In addition, a 30 kDa cathepsin B-like enzyme, two metacaspases and two autophagins have been described. Serine peptidases described in the parasite include oligopeptidase B, a member of the prolyl oligopeptidase family involved in Ca2+-signaling during mammalian cell invasion; a prolyl endopeptidase (Tc80), against which inhibitors are being developed, and a lysosomal serine carboxypeptidase. Metallopeptidases homologous to the gp63 of Leishmania spp. are present, as well as two metallocarboxypeptidases belonging to the M32 family, previously found only in prokaryotes. The proteasome has properties similar to those of other eukaryotes, and its inhibition by lactacystin blocks some differentiation steps in the life cycle of the parasite. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

18.
19.
Mycobacterium tuberculosis ornithine acetyltransferase (Mtb OAT; E.C. 2.3.1.35) is a key enzyme of the acetyl recycling pathway during arginine biosynthesis. It reversibly catalyzes the transfer of the acetyl group from N-acetylornithine (NAORN) to l-glutamate. Mtb OAT is a member of the N-terminal nucleophile fold family of enzymes. The crystal structures of Mtb OAT in native form and in its complex with ornithine (ORN) have been determined at 1.7 and 2.4 Å resolutions, respectively. ORN is a competitive inhibitor of this enzyme against l-glutamate as substrate. Although the acyl-enzyme complex of Streptomyces clavuligerus ornithine acetyltransferase has been determined, ours is the first crystal structure to be reported of an ornithine acetyltransferase in complex with an inhibitor. ORN binding does not alter the structure of Mtb OAT globally. However, its presence stabilizes the three C-terminal residues that are disordered and not observed in the native structure. Also, stabilization of the C-terminal residues by ORN reduces the size of the active-site pocket volume in the structure of the ORN complex. The interactions of ORN and the protein residues of Mtb OAT unambiguously delineate the active-site residues of this enzyme in Mtb. Moreover, modeling studies carried out with NAORN based on the structure of the ORN-Mtb OAT complex reveal important interactions of the carbonyl oxygen of the acetyl group of NAORN with the main-chain nitrogen atom of Gly128 and with the side-chain oxygen of Thr127. These interactions likely help in the stabilization of oxyanion formation during enzymatic reaction and also will polarize the carbonyl carbon-oxygen bond, thereby enabling the side-chain atom Oγ1 of Thr200 to launch a nucleophilic attack on the carbonyl-carbon atom of the acetyl group of NAORN.  相似文献   

20.
CYP51 (sterol 14α-demethylase) is an efficient target for clinical and agricultural antifungals and an emerging target for treatment of Chagas disease, the infection that is caused by multiple strains of a protozoan pathogen Trypanosoma cruzi. Here, we analyze CYP51A from the Y strain T. cruzi. In this protein, proline 355, a residue highly conserved across the CYP51 family, is replaced with serine. The purified enzyme retains its catalytic activity, yet has been found less susceptible to inhibition. These biochemical data are consistent with cellular experiments, both in insect and human stages of the pathogen. Comparative structural analysis of CYP51 complexes with VNI and two derivatives suggests that broad-spectrum CYP51 inhibitors are likely to be preferable as antichagasic drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号