共查询到20条相似文献,搜索用时 0 毫秒
1.
Huijun Yu 《Journal of molecular biology》2009,386(3):802-4119
Experiments dedicated to gaining an understanding of the mechanism underlying the orderly, sequential association of elongation factor Tu (EF-Tu) and elongation factor G (EF-G) with the ribosome during protein synthesis were undertaken. The binding of one EF is always followed by the binding of the other, despite the two sharing the same—or a largely overlapping—site and despite the two having isosteric structures. Aminoacyl-tRNA, peptidyl-tRNA, and deacylated-tRNA were bound in various combinations to the A-site, P-site, or E-site of ribosomes, and their effect on conformation in the peptidyl transferase center, the GTPase-associated center, and the sarcin/ricin domain (SRD) was determined. In addition, the effect of the ribosome complexes on sensitivity to the ribotoxins sarcin and pokeweed antiviral protein and on the binding of EF-G•GTP were assessed. The results support the following conclusions: the EF-Tu ternary complex binds to the A-site whenever it is vacant and the P-site has peptidyl-tRNA; and association of the EF-Tu ternary complex is prevented, simply by steric hindrance, when the A-site is occupied by peptidyl-tRNA. On the other hand, the affinity of the ribosome for EF-G•GTP is increased when peptidyl-tRNA is in the A-site, and the increase is the result of a conformational change in the SRD. We propose that peptidyl-tRNA in the A-site is an effector that initiates a series of changes in tertiary interactions between nucleotides in the peptidyl transferase center, the SRD, and the GTPase-associated center of 23S rRNA; and that the signal, transmitted through a transduction pathway, informs the ribosome of the position of peptidyl-tRNA and leads to a conformational change in the SRD that favors binding of EF-G. 相似文献
2.
Anuradha Seshadri 《Journal of molecular biology》2010,401(5):854-865
In eubacteria, ribosome recycling factor (RRF) and elongation factor G (EFG) function together to dissociate posttermination ribosomal complexes. Earlier studies, using heterologous factors from Mycobacterium tuberculosis in Escherichia coli revealed that specific interactions between RRF and EFG are crucial for their function in ribosome recycling. Here, we used translation factors from E. coli, Mycobacterium smegmatis and M. tuberculosis, and polysomes from E. coli and M. smegmatis, and employed in vivo and in vitro experiments to further understand the role of EFG in ribosome recycling. We show that E. coli EFG (EcoEFG) recycles E. coli ribosomes with E. coli RRF (EcoRRF), but not with mycobacterial RRFs. Also, EcoEFG fails to recycle M. smegmatis ribosomes with either EcoRRF or mycobacterial RRFs. On the other hand, mycobacterial EFGs recycle both E. coli and M. smegmatis ribosomes with either of the RRFs. These observations suggest that EFG establishes distinct interactions with RRF and the ribosome to carry out ribosome recycling. Furthermore, the EFG chimeras generated by swapping domains between mycobacterial EFGs and EcoEFG suggest that while the residues needed to specify the EFG interaction with RRF are located in domains IV and V, those required to specify its interaction with the ribosome are located throughout the molecule. 相似文献
3.
Elzbieta Kierzek Shawn M. Christensen Thomas H. Eickbush Douglas H. Turner Walter N. Moss 《Journal of molecular biology》2009,390(3):428-41295
Sequences from the 5′ region of R2 retrotransposons of four species of silk moth are reported. In Bombyx mori, this region of the R2 messenger RNA contains a binding site for R2 protein and mediates interactions critical to R2 element insertion into the host genome. A model of secondary structure for a segment of this RNA is proposed on the basis of binding to oligonucleotide microarrays, chemical mapping, and comparative sequence analysis. Five conserved secondary structures are identified, including a novel pseudoknot. There is an apparent transition from an entirely RNA structure coding function in most of the 5′ segment to a protein coding function near the 3′ end. This suggests that local regions evolved under separate functional constraints (structural, coding, or both). 相似文献
4.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c. 相似文献
5.
Marcelo F. Marcondes Diego M. Assis Mirian A.F. Hayashi 《Biochemical and biophysical research communications》2010,391(1):123-73
In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6× His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning. 相似文献
6.
Mikhail A. Galkin 《BBA》2006,1757(3):206-214
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 °C, but not at 37 °C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 °C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 °C, but had little effect at 37 °C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 °C relative to at 37 °C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP. 相似文献
7.
8.
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ABC-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain, commonly called the “hinge” domain, by a long antiparallel coiled coil. Although the ATPase and hinge domains of SMC proteins have been the subject of extensive investigation, little is known about the coiled coil, in spite of its clear importance for SMC function. This limited knowledge is primarily due to a lack of structural information. We report here the first experimental constraints on the relative alignment of the N- and C-terminal halves of the MukB coiled coil, obtained by a combination of limited proteolysis and site-directed cross-linking approaches. Using these experimental constraints, phylogenetic data, and coiled-coil prediction algorithms, we propose a pairing scheme for the discontinuous segments in the coiled coil. This structural model will not only facilitate the study of the physiological role of this unusually long and flexible antiparallel coiled coil but also help to delineate the boundaries between MukB domains. 相似文献
9.
10.
Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X = 0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids. 相似文献
11.
Bing-Sang Wong Ta-Wei Lin Pei-Ni Chen Wu-Hsien Kuo Shu-Chen Chu Yih-Shou Hsieh 《Chemico-biological interactions》2009,180(2):165-174
Both the root and stem bark of Mahonia species were popular folk medicines. The plant has several proven biological activities including anti-bacterial, anti-fungal, and anti-inflammatory effects. However, Mahonia has not been studied for its anticancer effects. In the present study, we made extracts from Mahonia oiwakensis (MOE), a selected species in Taiwan, and investigated their effects on various human lung cells. We found that MOE-induced apoptotic death in human A549 non-small-cell lung carcinoma (NSCLC) cells in a dose- and time-dependent manner. Treatment with the extracts also caused an increase in the sub-G1 fraction of cells, chromosome condensation, and DNA fragmentation. The mitochondrial-mediated pathway was implicated in this MOE-induced apoptosis as evidenced by the activation of the caspase cascade, cleavage of poly (ADP-ribose) polymerase (PARP), disruption of mitochondrial membrane potential, and release of cytochrome C. A higher ratio of Bax/Bcl-2 proteins and cleavage of Bid were also observed in MOE-induced cell apoptosis. In A549 tumor-xenografted nude mice, MOE also retarded in vivo proliferation (P < 0.05) and induced apoptosis in tumor cells, as shown by a decrease in Ki-67-positive staining (P < 0.05) and increased transferase-mediated dUTP nick-end labeling (TUNEL)-positive staining (P < 0.05). In conclusion, MOE inhibits the growth of human lung cancer cells in vitro and in vivo, suggesting that it may have therapeutic potential against human lung cancer. 相似文献
12.
The architectural DNA-binding protein HMGB1 consists of two tandem HMG-box domains joined by a basic linker to a C-terminal acidic tail, which negatively regulates HMGB1-DNA interactions by binding intramolecularly to the DNA-binding faces of both basic HMG boxes. Here we demonstrate, using NMR chemical-shift mapping at different salt concentrations, that the tail has a higher affinity for the B box and that A box-tail interactions are preferentially disrupted. Previously, we proposed a model in which the boxes are brought together in a collapsed, tail-mediated assembly, which is in dynamic equilibrium with a more extended form. Small-angle X-ray scattering data are consistent with such a dynamic equilibrium between collapsed and extended structures and are best represented by an ensemble. The ensembles contain a significantly higher proportion of collapsed structures when the tail is present. 15N NMR relaxation measurements show that full-length HMGB1 has a significantly lower rate of rotational diffusion than the tail-less protein, consistent with the loss of independent domain motions in an assembled complex. Mapping studies using the paramagnetic spin label MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidin-3-yl)methyl methanethiosulfonate] placed at three locations in the tail confirm our previous findings that the tail binds to both boxes with some degree of specificity. The end of the tail lies further from the body of the protein and is therefore potentially free to interact with other proteins. MTSL labelling at a single site in the A domain (C44) causes detectable relaxation enhancements of B domain residues, suggesting the existence of a “sandwich”-like collapsed structure in which the tail enables the close approach of the basic domains. These intramolecular interactions are presumably important for the dynamic association of HMGB1 with chromatin and provide a mechanism by which protein-protein interactions or posttranslational modifications might regulate the function of the protein at particular sites, or at particular stages in the cell cycle. 相似文献
13.
The stacking of the thylakoids of two leguminosae. Differential responses to H+ and divalent cations
The stacking of the thylakoids of lupine and horse bean has been studied by the digitonin method in relation to the concentration of H+, Ca2+ or Mg2+. (1) The isolectric point appears to be 4.7 for the two species. At this pH, Ca2+ has no effect on the stacking of the lupine thylakoids but it lowers the stacking of those of horse bean. (2) At pH 7.6, for any given Ca2+ concentration, the horse bean thylakoids fix a lesser amount of Ca2+ than those of lupine but they are more stacked. (3) The surface potential has been estimated by the use of the Gouy-Chapman model, modified to take account of H+ and Ca2+ binding. Simulation of the experiments indicates that the results may be explained by supposing that (i) the anionic groups are less numerous on the horse bean thylakoids than on those of lupine, (ii) they are arranged such that the affinity for the binding of Ca2+ or Mg2+ is higher for horse bean and virtually nil for lupine, and (iii) the divalent cation binding per se promotes the stacking when the coulombic repulsion is sufficiently weakened by screening and binding. 相似文献
14.
Glutathione transferases (GSTs) from the tau class (GSTU) are unique to plants and have important roles in stress tolerance and the detoxification of herbicides in crops and weeds. A fluorodifen-induced GST isoezyme (GmGSTU4-4) belonging to the tau class was purified from Glycine max by affinity chromatography. This isoenzyme was cloned and expressed in Escherichia coli, and its structural and catalytic properties were investigated. The structure of GmGSTU4-4 was determined at 1.75 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). The enzyme adopts the canonical GST fold but with a number of functionally important differences. Compared with other plant GSTs, the three-dimensional structure of GmGSTU4-4 primarily shows structural differences in the hydrphobic substrate binding site, the linker segment and the C-terminal region. The X-ray structure identifies key amino acid residues in the hydrophobic binding site (H-site) and provides insights into the substrate specificity and catalytic mechanism of the enzyme. The isoenzyme was highly active in conjugating the diphenylether herbicide fluorodifen. A possible reaction pathway involving the conjugation of glutathione with fluorodifen is described based on site-directed mutagenesis and molecular modeling studies. A serine residue (Ser13) is present in the active site, at a position that would allow it to stabilise the thiolate anion of glutathione and enhance its nucleophilicity. Tyr107 and Arg111 present in the active site are important structural moieties that modulate the catalytic efficiency and specificity of the enzyme, and participate in kcat regulation by affecting the rate-limiting step of the catalytic reaction. A hitherto undescribed ligand-binding site (L-site) located in a surface pocket of the enzyme was also found. This site is formed by conserved residues, suggesting it may have an important functional role in the transfer and delivery of bound ligands, presumably to specific protein receptors. 相似文献
15.
Haijun Liu 《BBA》2009,1787(8):1029-1038
The Arabidopsis thaliana mutant psbo1 has recently been described and characterized. Loss of expression of the PsbO-1 protein leads to a variety of functional perturbations including elevated levels of the PsbO-2 protein and defects on both the oxidizing- and reducing-sides of Photosystem II. In this communication, two plant lines were produced using the psbo1 mutant as transgenic host, which contained an N-terminally histidine6-tagged PsbO-1 protein. This protein was expressed and correctly targeted into the thylakoid lumen. Immunological analysis indicated that different levels of expression of the modified PsbO-1 protein were obtained in different transgenic plant lines and that the level of expression in each line was stable over several generations. Examination of the Photosystem II closure kinetics demonstrated that the defective double reduction of QB and the delayed exchange of QBH2 with the plastoquinone pool which were observed during the characterization of the psbo1 mutant were effectively restored to wild-type levels by the His6-tagged PsbO-1 protein. Flash fluorescence induction and decay were also examined. Our results indicated that high expression of the modified PsbO-1 was required to increase the ratio of PS IIα/PS IIβ reaction centers to wild-type levels. Fluorescence decay kinetics in the absence of DCMU indicated that the expression of the His6-tagged PsbO-1 protein restored efficient electron transfer to QB, while in the presence of DCMU, charge recombination between QA− and the S2 state of the oxygen-evolving complex occurred at near wild-type rates. Our results indicate that high expression of the His6-tagged PsbO-1 protein efficiently complements nearly all of the photochemical defects observed in the psbo1 mutant. Additionally, this study establishes a platform on which the in vivo consequences of site-directed mutagenesis of the PsbO-1 protein can be examined. 相似文献
16.
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis. 相似文献
17.
Young-Jun Park Sung-Jin Yoon Hee-Bong Lee 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.Methods
The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.Results
The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.Conclusions
The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.General significance
The enzyme is the first characterized archaeal dienelactone hydrolase. 相似文献18.
Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes. We could identify a significant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled Photosystem II complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme. 相似文献
19.
Helen E. Jesse Tacita L. Nye Samantha McLean Jeffrey Green Brian E. Mann Robert K. Poole 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(9):1693-1703
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. 相似文献
20.
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed. 相似文献