首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The core domain of p53 is extremely susceptible to mutations that lead to loss of function. We analysed the stability and DNA-binding activity of such mutants to understand the mechanism of second-site suppressor mutations. Double-mutant cycles show that N239Y and N268D act as 'global stability' suppressors by increasing the stability of the cancer mutants G245S and V143A-the free energy changes are additive. Conversely, the suppressor H168R is specific for the R249S mutation: despite destabilizing wild type, H168R has virtually no effect on the stability of R249S, but restores its binding affinity for the gadd45 promoter. NMR structural comparisons of R249S/H168R and R249S/T123A/H168R with wild type and R249S show that H168R reverts some of the structural changes induced by R249S. These results have implications for possible drug therapy to restore the function of tumorigenic mutants of p53: the function of mutants such as V143A and G245S is theoretically possible to restore by small molecules that simply bind to and hence stabilize the native structure, whereas R249S requires alteration of its mutant native structure.  相似文献   

2.
We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions in neighboring residues. In contrast, the "structural" oncogenic mutations H168R and R249S induce substantial structural perturbation around the mutation site in the L2 and L3 loops, respectively. H168R is a specific intragenic suppressor mutation for R249S. When both cancer mutations are combined in the same molecule, Arg(168) mimics the role of Arg(249) in wild type, and the wild type conformation is largely restored in both loops. Our structural and biophysical data provide compelling evidence for the mechanism of rescue of mutant p53 by intragenic suppressor mutations and reveal features by which proteins can adapt to deleterious mutations.  相似文献   

3.
Missense mutations in the DNA-binding core domain of the tumour suppressor protein p53 are frequent in cancer. Many of them result in loss of native structure. The mutation R249S is one of the six most common cancer-associated p53 mutations ("hot-spots"). As it is highly frequent in hepatocellular carcinoma, its rescue is an important therapeutic target. We have used NMR techniques to study the structural effects of the R249S mutation. The overall fold of the core domain is retained in R249S, and it does not take up a denatured "mutant conformation". However, the beta-sandwich had increased flexibility and, according to changes in chemical shift, there was local distortion throughout the DNA-binding interface. It is likely that the R249S mutation resulted in an ensemble of native and native-like conformations in a dynamic equilibrium. The peptide FL-CDB3 that was designed to rescue mutants of p53 by binding specifically to its native structure was found to revert the chemical shifts of R249S back towards the wild-type values and so reverse the structural effects of mutation. We discuss the implications for a rescue strategy and also for the analysis of antibody-binding data.  相似文献   

4.
5.
We identified a minimal domain of human p53 required for the transactivation of a p53 response element in Saccharomyces cerevisiae. This domain contains the central region of p53 sufficient for specific DNA binding, which colocalizes with the region responsible for binding simian virus 40 large T antigen, 53BP1, and 53BP2. Thirty amino acid positions, including natural mutational hot spots (R175, R213, R248, R249, and R273), in the minimal DNA-binding domain were mutated by alanine substitution. Alanine substitutions at positions R213, R248, R249, D281, R282, R283, E286, and N288 affected transactivation but allowed binding to at least one of the three interacting proteins; these amino acids may be involved in amino acid-base pair contacts. Surprisingly, alanine substitution at the mutational hot spot R175 did not affect DNA binding, transactivation, or T-antigen binding, although it nearly eliminated binding to 53BP1 and 53BP2. Mutation of H168 significantly affected only T-antigen binding, and mutation of E285 affected only 53BP1 binding. Thus, we implicate specific residues of p53 in different DNA and protein interactions.  相似文献   

6.
7.
8.
9.
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.  相似文献   

10.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

11.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

12.
The mutation of R273→H in the p53 core domain (p53-CD) is one of the most common mutations found in human cancers. Although the 273H p53-CD retains the wild-type conformation and stability, it lacks sequence-specific DNA binding, a transactivation function and growth suppression. However, mutating T284→R in the 273H p53-CD restores the DNA binding affinity, and transactivation and tumour suppressor functions. Since X-ray/NMR structures of DNA-free or DNA-bound mutant p53-CD molecules are unavailable, the factors governing the loss and rescue of sequence-specific DNA binding in the 273H and 273H+284R p53-CD, respectively, are unclear. Hence, we have carried out molecular dynamics (MD) simulations of the wild-type, single mutant and double mutant p53-CD, free and DNA bound, in the presence of explicit water molecules. Based on the MD structures, the DNA-binding free energy of each p53 molecule has been computed and decomposed into component energies and contributions from the interface residues. The wild-type and mutant p53-CD MD structures were found to be consistent with the antibody-binding, X-ray and NMR data. The predicted DNA binding affinity and specificity of both mutant p53-CDs were also in accord with experimental data. The non-detectable DNA binding of the 273H p53-CD is due mainly to the disruption of a hydrogen-bonding network involving R273, D281 and R280, leading to a loss of major groove binding by R280 and K120. The restoration of DNA binding affinity and specificity of the 273H+284R p53-CD is due mainly to the introduction of another DNA-binding site at position 284, leading to a recovery of major groove binding by R280 and K120. The important role of water molecules and the DNA major groove conformation as well as implications for structure-based linker rescue of the 273H p53-CD DNA-binding affinity are discussed.  相似文献   

13.
p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases.  相似文献   

14.
The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H) in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273C_T284R, R273H_T284R, and R273H_S240R). In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273C_T284R, R273H_T284R and R273H_S240R) can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis) to treat human cancer.  相似文献   

15.
The tumor suppressor gene p53 has been identified as the most frequent site of genetic alterations in human cancers. Vinyl chloride, a known human carcinogen, has been associated with specific A T transversions at codons 179, 249, and 255 of the p53 gene. The mutations result in amino acid substitutions of His Leu at residue 179, Arg Trp at residue 249, and Ile Phe at residue 255 in highly conserved regions of the DNA-binding core domain of the p53 protein. We previously used molecular dynamics calculations to demonstrate that the latter two mutants contain certain common regions that differ substantially in conformation from the wild-type structure. In order to determine whether these conformational changes are consistent for other p53 mutants, we have now used molecular dynamics to determine the structure of the DNA-binding core domain of the Leu 179 p53 mutant. The results indicate that the Leu 179 mutant differs substantially from the wild-type structure in certain discrete regions that are similar to those noted previously in the other p53 mutants. One of these regions (residues 204–217) contains the epitope for the monoclonal antibody PAb240, which is concealed in the wild-type structure, but accessible in the mutant structure, and another region (residues 94–110) contains the epitope for the monoclonal antibody PAb1620, which is accessible in the wild-type structure, but concealed in the mutant structure. Immunologic analyses of tumor tissue known to contain this mutation confirmed these predicted conformational shifts in the mutant p53 protein.  相似文献   

16.
The tumor suppressor p53 is frequently mutated in human cancers. Upon activation it can induce cell cycle arrest or apoptosis. ASPP2 can specifically stimulate the apoptotic function of p53 but not cell cycle arrest, but the mechanism of enhancing the activation of pro-apoptotic genes over cell cycle arrest genes remains unknown. In this study, we analyzed the binding of 53BP2 (p53-binding protein 2, the C-terminal domain of ASPP2) to p53 core domain and various mutants using biophysical techniques. We found that several p53 core domain mutations (R181E, G245S, R249S, R273H) have different effects on the binding of DNA response elements and 53BP2. Further, we investigated the existence of a ternary complex consisting of 53BP2, p53, and DNA response elements to gain insight into the specific pro-apoptotic activation of p53. We found that binding of 53BP2 and DNA to p53 is mutually exclusive in the case of GADD45, p21, Bax, and PIG3. Both pro-apoptotic and non-apoptotic response elements were competed off p53 by 53BP2 with no indication of a ternary complex.  相似文献   

17.
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.  相似文献   

18.
A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53.  相似文献   

19.
The tumor suppressor gene p53 has been identified as the most frequent target of genetic alterations in human cancers. Vinyl chloride, a known human carcinogen that induces the rare sentinel neoplasm angiosarcoma of the liver, has been associated with specific A T transversions at the first base of codons 249 and 255 of the p53 gene. These mutations result in an ArgTrp amino acid substitution at residue 249 and an IlePhe amino acid substitution at residue 255 in a highly conserved region in the DNA-binding core domain of the p53 protein. To determine the effects of these substitutions on the three-dimensional structure of the p53 protein, we have performed molecular dynamics calculations on this core domain of the wild-type and the Trp-249 and Phe-255 mutants to compute the average structures of each of the three forms. Comparisons of the computed average structures show that both mutants differ substantially from the wild-type structure in certain common, discrete regions. One of these regions (residues 204–217) contains the epitope for the monoclonal antibody PAb240, which is concealed in the wild-type structure but accessible in both mutant structures. In order to confirm this conformational shift, tumor tissue and serum from vinyl chloride-exposed individuals with angiosarcomas of the liver were examined by immunohistochemistry and enzyme-linked immunosorbent assay. Individuals with tumors that contained the p53 mutations were found to have detectable mutant p53 protein in their tumor tissue and serum, whereas individuals with tumors without mutations and normal controls did not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号