共查询到20条相似文献,搜索用时 0 毫秒
1.
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology. 相似文献
2.
Improvements on the computational methods for affinity prediction from the structure of protein-ligand complexes require a better understanding of the nature of molecular interactions and biomolecular recognition principles. In the present contribution, the binding of two chemically closely related human aldose reductase inhibitors had been studied by high-resolution X-ray analysis (0.92-1.35 ?) and isothermal titration calorimetry against a series of single-site mutants of the wild-type protein. A crucial threonine thought to be involved in a short bromine-to-oxygen halogen bond to the inhibitors in the wild type has been mutated to the structurally similar residues alanine, cysteine, serine and valine. Overall, structurally, the binding mode of the inhibitors is conserved; however, small but significant geometrical adaptations are observed as a consequence of the spatial and electronic changes at the mutation site. They involve the opening of a central bond angle and shifts in consequence of the lost or gained halogen bonds. Remarkably, the tiny structural changes are responded by partly strong modulation of the thermodynamic profiles. Even though the free energy of binding is maximally perturbed by only 7 kJ/mol, much stronger modulations and shifts in the enthalpy and entropy signatures are revealed, which indicate a pronounced enthalpy/entropy compensation. However, an explanatory correlation can be detected when facing these perturbances against the small structural changes. This also provides deeper insights into how single-site mutations can alter the selectivity profile of closely related ligands against a target protein. 相似文献
3.
Ileal bile acid-binding protein (I-BABP) is a soluble bile acids (BA) carrier protein which belongs to the fatty acid-binding protein (FABP) family. In the gut, its expression is strictly restricted to the ileum, where it is thought to be involved in the active BA reabsorption. Therefore, I-BABP gene expression levels might be rate limiting for the BA enterohepatic circulation, and hence, might be crucial for cholesterol (CS) homeostasis. Indeed, BA not reclaimed by intestinal absorption constitute the main way to eliminate a CS excess. However, such a function is not yet established. Because generally rate limiting genes are tightly controlled, we have undertaken the study of the I-BABP gene regulation. It was found that both BA and CS, probably via oxysterols, are able to up-regulate the trancription rate of I-BABP gene. The fact that intracellular sterol sensors (FXR, LXR and SREBP1c) are involved in the control of I-BABP gene expression strongly suggest a crucial role for I-BABP in the ileum. 相似文献
4.
Archaeal A-ATP synthases catalyze the formation of the energy currency ATP. The chemical mechanisms of ATP synthesis in A-ATP synthases are unknown. We have determined the crystal structure of a transition-like state of the vanadate-bound form of catalytic subunit A (AVi) of the A-ATP synthase from Pyrococcus horikoshii OT3. Two orthovanadate molecules were observed in the AVi structure, one of which interacts with the phosphate binding loop through residue S238. The second vanadate is positioned in the transient binding site, implicating for the first time the pathway for phosphate entry to the catalytic site. Moreover, since residues K240 and T241 are proposed to be essential for catalysis, the mutant structures of K240A and T241A were also determined. The results demonstrate the importance of these two residues for transition-state stabilization. The structures presented shed light on the diversity of catalytic mechanisms used by the biological motors A- and F-ATP synthases and eukaryotic V-ATPases. 相似文献
5.
Ambaye ND Pero SC Gunzburg MJ Yap M Clayton DJ Del Borgo MP Perlmutter P Aguilar MI Shukla GS Peletskaya E Cookson MM Krag DN Wilce MC Wilce JA 《Journal of molecular biology》2011,412(3):397-411
Growth-receptor-bound protein (Grb)7 is an adapter protein aberrantly overexpressed, along with the erbB-2 receptor in breast cancer and in other cancers. Normally recruited to focal adhesions with a role in cell migration, it is associated with erbB-2 in cancer cells and is found to exacerbate cancer progression via stimulation of cell migration and proliferation. The G7-18NATE peptide (sequence: WFEGYDNTFPC cyclized via a thioether bond) is a nonphosphorylated peptide that was developed for the specific inhibition of Grb7 by blocking its SH2 domain. Cell-permeable versions of G7-18NATE are effective in the reduction of migration and proliferation in Grb7-overexpressing cells. It thus represents a promising starting point for the development of a therapeutic against Grb7. Here, we report the crystal structure of the G7-18NATE peptide in complex with the Grb7-SH2 domain, revealing the structural basis for its interaction. We also report further rounds of phage display that have identified G7-18NATE analogues with micromolar affinity for Grb7-SH2. These peptides retained amino acids F2, G4, and F9, as well as the YDN motif that the structural biology study showed to be the main residues in contact with the Grb7-SH2 domain. Isothermal titration calorimetry measurements reveal similar and better binding affinity of these peptides compared with G7-18NATE. Together, this study facilitates the optimization of second-generation inhibitors of Grb7. 相似文献
6.
7.
Klepsch MM Kovermann M Löw C Balbach J Permentier HP Fusetti F de Gier JW Slotboom DJ Berntsson RP 《Journal of molecular biology》2011,414(1):75-85
The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 Å) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 Å, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides. 相似文献
8.
Czjzek M Létoffé S Wandersman C Delepierre M Lecroisey A Izadi-Pruneyre N 《Journal of molecular biology》2007,365(4):1176-1186
To satisfy their iron needs, several Gram-negative bacteria use a heme uptake system involving an extracellular heme-binding protein called hemophore. The function of the hemophore is to acquire free or hemoprotein-bound heme and to transfer it to HasR, its specific outer membrane receptor, by protein-protein interaction. The hemophore HasA secreted by Serratia marcescens, an opportunistic pathogen, was the first to be identified and is now very well characterized. HasA is a monomer that binds one b heme with strong affinity. The heme in HasA is highly exposed to solvent and coordinated by an unusual pair of ligands, a histidine and a tyrosine. Here, we report the identification, the characterization and the X-ray structure of a dimeric form of HasA from S. marcescens: DHasA. We show that both monomeric and dimeric forms are secreted in iron deficient conditions by S. marcescens. The crystal structure of DHasA reveals that it is a domain swapped dimer. The overall structure of each monomeric subunit of DHasA is very similar to that of HasA but formed by parts coming from the two different polypeptide chains, involving one of the heme ligands. Consequently DHasA binds two heme molecules by residues coming from both polypeptide chains. We show here that, while DHasA can bind two heme molecules, it is not able to deliver them to the receptor HasR. However, DHasA can efficiently transfer its heme to the monomeric form that, in turn, delivers it to HasR. We assume that DHasA can function as a heme reservoir in the hemophore system. 相似文献
9.
Balog ER Saetern OC Finch W Hoeft CO Thai V Harvey SL Kellogg DR Rubin SM 《Journal of molecular biology》2011,411(3):520-528
Cks (cyclin-dependent kinase subunit) proteins are essential eukaryotic cell cycle regulatory proteins that physically associate with cyclin-dependent kinases (Cdks) to modulate their activity. Cks proteins have also been studied for their ability to form domain-swapped dimers by exchanging β-strands. Domain swapping is mediated by a conserved β-hinge region containing two proline residues. Previous structural studies indicate that Cks in its dimer form is unable to bind Cdk, suggesting that the monomer-dimer equilibrium of Cks may have an effect on Cks-mediated Cdk regulation. We present the crystal structure of a proline-to-alanine mutant Saccharomyces cerevisiae Cks protein (Cks1 P93A) that preferentially adopts the monomer conformation but surprisingly fails to bind Cdk. Comparison of the Cks1 P93A structure to that of other Cks proteins reveals that Pro93 is critical for stabilizing a multiple β-turn structure in the hinge region that properly positions an essential Cdk-binding residue. Additionally, we find that these β-turn formations, conserved in Cks homologs, have implications for the mechanism and preferentiality of strand exchange. Together, our observations suggest that the conservation of Cks hinge-region prolines reflects their functions in forming a Cdk binding interface and that the ability of these prolines to control partitioning between monomer and dimer is a consequence of the β-turn networks within the hinge. 相似文献
10.
Ileal bile acid-binding protein (I-BABP) is a 14 kDa cytosolic protein which binds bile acids with a high affinity. It is thought to be implicated in the enterohepatic circulation of bile acids and, hence, in cholesterol homeostasis. Using a combination of in vivo and in vitro experiments, we have recently shown that I-BABP gene expression can be indirectly up-regulated by cholesterol through the activation of sterol-responsive element-binding protein 1c (SREBP1c) by liver X-receptor (LXR). We report here that I-BABP can be also a direct target for LXR. I-BABP regulation by LXR is maintained when the SREBP binding site is deleted in the I-BABP promoter and occurs, in the absence of conventional LXRE sequences, through an IR1 sequence previously identified as a farnesoid X-receptor-responsive element (FXRE). Electrophoretic mobility shift assays demonstrated that the LXR/RXR heterodimer specifically recognizes the FXRE. Collectively, these data strongly suggest that LXR can regulate the I-BABP gene by both direct and indirect mechanisms. 相似文献
11.
To prevent diabetic complications derived from enhanced glucose flux via the polyol pathway the development of aldose reductase inhibitors (ARIs) has been established as a promising therapeutic concept. In order to identify novel lead compounds, a virtual screening (VS) was performed successfully suggesting carboxylate-type inhibitors of sub-micromolar to micromolar affinity. Here, we combine a structural characterization of the binding modes observed by X-ray crystallography with isothermal titration calorimetry (ITC) measurements providing insights into the driving forces of inhibitor binding, particularly of the first leads from VS. Characteristic features of this novel inhibitor type include a carboxylate head group connected via an alkyl spacer to a heteroaromatic moiety, which is linked to a further nitro-substituted aromatic portion. The crystal structures of two enzyme-inhibitor complexes have been determined at resolutions of 1.43 A and 1.55 A. Surprisingly, the carboxylic group of the most potent VS lead occupies the catalytic pocket differently compared to the interaction geometry observed in almost all other crystal structures with structurally related ligands and obtained under similar conditions, as an interstitial water molecule is picked up upon ligand binding. The nitro-aromatic moiety of both leads occupies the specificity pocket of the enzyme, however, adopting a different geometry compared to the docking prediction: unexpectedly, the nitro group binds to the bottom of the specificity pocket and provokes remarkable induced-fit adaptations. A peptide group located at the active site orients in such a way that H-bond formation to one nitro group oxygen atom is enabled, whereas a neighbouring tyrosine side-chain performs a slight rotation off from the binding cavity to accommodate the nitro group. Identically constituted ligands, lacking this nitro group, exhibit an affinity drop of one order of magnitude. In addition, thermodynamic data suggest a strongly favourable contribution to binding enthalpy in case the inhibitor is equipped with a nitro group at the corresponding position. To further investigate this phenomenon, we determined crystal structures and thermodynamic data of two similarly constituted IDD-type inhibitors addressing the specificity pocket with either a nitro or halogen-substituted aromatic moiety. As these data suggest, the nitro group provokes the enthalpic contribution, in addition to the H-bond mentioned above, by accepting two "non-classical" H-bonds donated by the aromatic tyrosine side-chain. In summary, this study provides the platform for further structure-guided design hypotheses of novel drug candidates with higher affinity and selectivity. 相似文献
12.
13.
Chicken liver bile acid-binding protein (L-BABP) binds to anionic lipid membranes by electrostatic interactions and acquires a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B. and Montich, G. G. (2003) Biochim. Biophys. Acta 1611, 98-106]. We studied the infrared amide I′ band of L-BABP bound to dipalmitoylphosphatidylglycerol (DPPG), dimyristoylphosphatidylglycerol (DMPG) and palmitoyloleoylphosphatidylglycerol (POPG) in the range of 7 to 60 °C. Besides, the thermotrophic behaviour of DPPG and DMPG was studied in the absence and in the presence of bound-protein by differential scanning calorimetry (DSC) and infrared spectra of the stretching vibration of methylene and carbonyl groups. When L-BABP was bound to lipid membranes in the liquid-crystalline state (POPG between 7 and 30 °C) acquired a more unfolded conformation that in membranes in the gel state (DPPG between 7 and 30 °C). Nevertheless, this conformational change of the protein in DMPG did not occur at the temperature of the lipid gel to liquid-crystalline phase transition detected by infrared spectroscopy. Instead, the degree of unfolding in the protein was coincident with a phase transition in DMPG that occurs with heat absorption and without change in the lipid order. 相似文献
14.
Le BV Kim H Choi J Kim JH Hahn MJ Lee C Kim KK Hwang HY 《Journal of molecular biology》2011,414(2):231-242
Endorepellin, the C-terminal region of perlecan, inhibits angiogenesis by disrupting actin cytoskeleton and focal adhesions. The C-terminal laminin-like globular domain (LG3) of endorepellin directs most of this antiangiogenic activity. To investigate the angiostatic mechanism and to identify structural determinants, we have solved crystal structures of the LG3 domain in both apo- and calcium-bound forms at resolutions of 1.5 Å and 2.8 Å, respectively. The conserved core has the jellyroll fold characteristic of LG domains. The calcium-induced structural changes seem very restricted, and the calcium binding site appears to be preformed, suggesting that the bound calcium ion, rather than structural rearrangements, contributes to antiangiogenesis. We have identified H4268 on the EF loop as a key residue for the biochemical function of LG3, since its mutation abolishes antiangiogenic activity, and mutant LG3 can no longer form a direct interaction with integrin. Taken together, we propose that these two distinct structural elements contribute to the angiostatic effect of endorepellin. 相似文献
15.
Anil Kumar Malathy Sony Subramanian Manimekalai Asha Manikkoth Balakrishna Goran Biukovi? Gerhard Grüber 《Journal of molecular biology》2010,401(5):892-666
The mutants P235A and F236A have been generated and their crystal structure was determined to resolutions of 2.38 and 2.35 Å, respectively, in order to understand the residues involved in the formation of the novel arched P-loop of subunit A of the A-ATP synthase from Pyrococcus horikoshii OT3. Both the structures show unique, altered conformations for the P-loop. Comparison with the previously solved wild type and P-loop mutant S238A structures of subunit A showed that the P-loop conformation for these two novel mutants occupy intermediate positions, with the wild type fully arched and the well-relaxed S238A mutant structures taking the extreme positions. Even though the deviation is similar for both mutants, the curvature of the P-loop faces the opposite direction. Deviations in the GER-loop, lying above the P-loop, are similar for both mutants, but in F236A, it moves towards the P-loop by around 2 Å. The curvature of the loop region V392-V410, located directly behind the P-loop, moves close by 3.6 Å towards the P-loop in the F236A structure and away by 2.5 Å in the P235A structure. Two major deviations were observed in the P235A mutant, which are not identified in any of the subunit A structures analyzed so far, one being a wide movement of the N-terminal loop region (R90-P110) making a rotation of 80° and the other being rigid-body rotation of the C-terminal helices from Q520-A588 by around 4° upwards. Taken together, the data presented demonstrate the concerted effects of the critical residues P235A, F236, and S238 in the unique P-loop conformation of the A-ATP synthases. 相似文献
16.
Rangarajan ES Nadeau G Li Y Wagner J Hung MN Schrag JD Cygler M Matte A 《Journal of molecular biology》2006,359(5):1249-1260
Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains I and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the "closed" state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an "open" state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding. 相似文献
17.
The bacterial enzyme aminoglycoside phosphotransferase(3′)-IIIa (APH) confers resistance against a wide range of aminoglycoside antibiotics. In this study, we use the Gaussian network model to investigate how the binding of nucleotides and antibiotics influences the dynamics and thereby the ligand binding properties of APH. Interestingly, in NMR experiments, the dynamics differ significantly in various APH complexes, although crystallographic studies indicate that no larger conformational changes occur upon ligand binding. Isothermal titration calorimetry also shows different thermodynamic contributions to ligand binding. Formation of aminoglycoside-APH complexes is enthalpically driven, while the enthalpic change upon aminoglycoside binding to the nucleotide-APH complex is much smaller. The differential effects of nucleotide binding and antibiotic binding to APH can be explained theoretically by single-residue fluctuations and correlated motions of the enzyme. The surprising destabilization of β-sheet residues upon nucleotide binding, as seen in hydrogen/deuterium exchange experiments, shows that the number of closest neighbors does not fully explain residue flexibility. Additionally, we must consider correlated motions of dynamic protein domains, which show that not only connectivity but also the overall protein architecture is important for protein dynamics. 相似文献
18.
Jérôme Gouge Sandrine Rosario Félix Romain Pierre Beguin Marc Delarue 《Journal of molecular biology》2013
Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn2 +, respectively. We examined the effect of Mn2 +, Co2 + and Zn2 + because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn2 + (or Co2 +) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn2 +, the sugar puckering of the primer strand 3′ terminus changes from C2′-endo to C3′-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis. 相似文献
19.
Tripti Shrivastava 《Journal of molecular biology》2009,392(4):1007-1019
Rv3291c is a member of the feast/famine regulatory protein family that is known to form stable protein-DNA complexes. We report a specific oligomeric transition between hexadecameric and octameric/lower-order oligomers in the presence of Phe that supports an effector-mediated model for the disassembly of a nucleosome-like particle. We had generated two mutants, Gly102Thr and Glu104Ala, which are part of the essential 100-106 effector-binding loop. The Gly102Thr mutant adopts an unusual ‘open’ quaternary structure and offers interesting functional insights co-related to the binding of an effector. This is similar to the previously reported Escherichia coli Lrp co-crystallized in the presence of DNA where the interactions of the substrate with the N-terminal DNA binding domain presumably lead to symmetry deviations to the oligomeric association. The present structure represents a direct evidence to support that changes made to the effector-binding domain at the C-terminus also result in a functionally relevant quaternary structural change. Conversely, the Glu104Ala mutant retains the closed quaternary association observed in the native protein and reveals nonsymmetrical interaction effects in the two subunits of the dimer. We also report that the native protein unexpectedly binds Lys but does not recognize Arg and offer a structural explanation for it. Error-scaled difference distance matrix analysis suggests that the protein has a relatively flexible core that is presumably needed to mediate the structural changes necessary for the protein's regulatory functions. 相似文献