首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical to the inhibitory action of the oncogene product, MDM2, on the tumour suppressor, p53, is association of the N-terminal domain of MDM2 (MDM2N) with the transactivation domain of p53. The structure of MDM2N was previously solved with a p53-derived peptide, or small-molecule ligands, occupying its binding cleft, but no structure of the non-liganded MDM2N (i.e. the apo-form) has been reported. Here, we describe the solution structure and dynamics of apo-MDM2N and thus reveal the nature of the conformational changes in MDM2N that accompany binding of p53. The new structure suggests that p53 effects displacement of an N-terminal segment of apo-MDM2N that occludes access to the shallow end of the p53-binding cleft. MDM2N must also undergo an expansion upon binding, achieved through a rearrangement of its two pseudosymetrically related sub-domains resulting in outward displacements of the secondary structural elements that comprise the walls and floor of the p53-binding cleft. MDM2N becomes more rigid and stable upon binding p53. Conformational plasticity of the binding cleft of apo-MDM2N could allow the parent protein to bind specifically to several different partners, although, to date, all the known liganded structures of MDM2N are highly similar to one another. The results indicate that the more open conformation of the binding cleft of MDM2N observed in structures of complexes with small molecules and peptides is a more suitable one for ligand discovery and optimisation.  相似文献   

2.
The oncogene mdm2 has been found to be amplified in human sarcomas, and the gene product binds to the tumor suppressor p53. In this report, we describe the dissection of the MDM2-binding domain on p53 as well as the p53-binding domain on MDM2. We also demonstrate that the oncoprotein simian virus 40 T antigen binds to the product of cellular oncogene mdm2. We have constructed several N- and C-terminal deletion mutants of p53 and MDM2, expressed them in vitro, and assayed their in vitro association capability. The N-terminal boundary of the p53-binding domain on MDM2 is between amino acids 1 and 58, while the C-terminal boundary is between amino acids 221 and 155. T antigen binds to an overlapping domain on the MDM2 protein. On the other hand, the MDM2-binding domain of p53 is defined by amino acids 1 and 159 at the N terminus. At the C terminus, binding is progressively reduced as amino acids 327 to 145 are deleted. We determined the effect of human MDM2 on the transactivation ability of wild-type human p53 in the Saos-2 osteosarcoma cell line, which does not have any endogenous p53. Human MDM2 inhibited the ability of human p53 to transactivate the promoter with p53-binding sites. Thus, human MDM2 protein, like the murine protein, can inactivate the transactivation ability of human p53. Interestingly, both the transactivation domain and the MDM2-binding domain of p53 are situated near the N terminus. We further show that deletion of the N-terminal 58 amino acids of MDM2, which eliminates p53 binding, also abolishes the capability of inactivating p53-mediated transactivation. This finding suggests a correlation of in vitro p53-MDM2 binding with MDM2's ability in vivo to interfere with p53-mediated transactivation.  相似文献   

3.
4.
MDM2 binds to the tumor suppressor protein p53 and regulates the level of p53 in cells. Although it is possible to prepare a small amount of the region of MDM2 that binds to p53, the expression level of this fragment of MDM2 is relatively low, limiting the studies involving this protein. Here, we describe a construct for the optimized bacterial expression and purification of the MDM2 p53 binding domain. We found that the expression level of the soluble MDM2 p53 binding domain in bacteria was increased dramatically by fusing it to its interaction partner, the p53 transactivation peptide. Attachment of the p53 transactivation peptide (residues 17-29) to the N-terminus of MDM2 resulted in a more than 200-fold increase of soluble protein expression of the p53 binding domain in bacteria. To obtain the final MDM2 p53 binding domain (residues 5-109) we inserted a tobacco etch virus protease recognition site between the P53 peptide and the MDM2 p53 binding domain. To weaken the protein/peptide interaction and facilitate the separation of the protein from the complex, we introduced a point mutation of one of the key interaction residues (F19A or W23A) in the p53 peptide. The advantages of our new construct are high yield and easy purification of the MDM2 protein.  相似文献   

5.
The Mdmx oncoprotein has only recently emerged as a critical - independent to Mdm2 - regulator of p53 activation. We have determined the crystal structure of the N-terminal domain of human Mdmx bound to a 15-residue transactivation domain peptide of human p53. The structure shows why antagonists of the Mdm2 binding to p53 are ineffective in the Mdmx-p53 interaction.  相似文献   

6.
We have used NMR to study the effects of peptide binding on the N-terminal p53-binding domain of human MDM2 (residues 25-109). There were changes in HSQC-chemical shifts throughout the domain on binding four different p53-derived peptide ligands that were significantly large to be indicative of global conformational changes. Large changes in chemical shift were observed in two main regions: the peptide-binding cleft that directly binds the p53 ligands; and the hinge regions connecting the beta-sheet and alpha-helical structures that form the binding cleft. These conformational changes reflect the adaptation of the cleft on binding peptide ligands that differ in length and amino acid composition. Different ligands may induce different conformational transitions in MDM2 that could be responsible for its function. The dynamic nature of MDM2 might be important in the design of anti-cancer drugs that are targeted to its p53-binding site.  相似文献   

7.
The multidomain E3 ubiquitin ligase MDM2 catalyzes p53 ubiquitination by a “dual-site” docking mechanism whereby MDM2 binding to at least two distinct peptide motifs on p53 promotes ubiquitination. One protein-protein interaction occurs between the N-terminal hydrophobic pocket of MDM2 and the transactivation motif of p53, and the second interaction occurs between the acidic domain of MDM2 and a motif in the DNA-binding domain of p53. A flexible N-terminal pseudo-substrate or “lid” adjacent to the N-terminal hydrophobic pocket of MDM2 has a phosphorylation site, and there are distinct models proposed on how the phosphorylated lid could affect MDM2 function. Biochemical studies have predicted that phosphomimetic mutation will stabilize the lid on the surface of MDM2 and will “open” the hydrophobic pocket and stabilize the MDM2-p53 complex, while NMR studies proposed that phosphomimetic mutation “closes” the lid over the MDM2 pocket and inhibits MDM2-p53 complex formation. To resolve these discrepancies, we utilized a quantitative fluorescence-based dye binding assay to measure the thermal unfolding of wild-type (wt), ΔLid, and S17D N-terminal domains of MDM2 as a function of increasing ligand concentration. Our data reveal that S17D lid mutation increases, rather than decreases, the thermostability of the N-terminal domain of MDM2 in the absence or in the presence of ligand. ΔLid mutation, by contrast, increases MDM2 thermoinstability. This is consistent with biochemical data, using full-length MDM2, showing that the S17D mutation stabilizes the MDM2-p53 complex and increases the specific activity of the E3 ubiquitin ligase function of MDM2. These data indicate that phosphomimetic lid mutation results in an “opening,” rather than a “closing,” of the pocket of MDM2 and highlight the ability of small intrinsically disordered or unstructured peptide motifs to regulate the specific activity of a protein.  相似文献   

8.
Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.  相似文献   

9.
10.
The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD) and an equivalent phage optimized peptide (12/1) were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.  相似文献   

11.
Internuclear distances derived from paramagnetic relaxation enhancement (PRE) data were used to restrain molecular dynamics simulations of the intrinsically unstructured transactivation domain of the tumor suppressor protein, p53. About 1000 structures were simulated using ensemble averaging of replicate molecules to compensate for the inherent bias in the PRE-derived distances. Gyration radii measurements on these structures show that the p53 transactivation domain (p53TAD) is statistically predominantly in a partially collapsed state that is unlike the open structure that is found for p53TAD bound to either the E3 ubiquitin ligase, MDM2, or the 70 kDa subunit of replication protein A, RPA70. Contact regions that potentially mediate the collapse were identified and found to consist of mostly hydrophobic residues. The identified contact regions preferentially place the MDM2 and RPA70 binding regions in close proximity. We show that our simulations thoroughly sample the available range of conformations and that a fraction of the molecules are in an open state that would be competent for binding either MDM2 or RPA70. We also show that the Stokes radius estimated from the average gyration radius of the ensemble is in good agreement with the value determined using size exclusion chromatography. Finally, the presence of a persistent loop localized to a PXP motif was identified. Serine residues flanking the PXP motif become phosphorylated in response to DNA damage, and we postulate that this will perturb the equilibrium population to more open conformations.  相似文献   

12.
13.
Two high affinity Ser-20-phospho-LXXLL p53-binding domains of p300 map to the C-terminal interferon-binding domain (IBiD) and N-terminal IBiD homology domain (IHD) regions. Purified fractions of a recombinant IHD miniprotein are active in a set of in vitro assays highlighting its affinity to the N-terminal LXXLL domain of p53 including (i) dose-dependent binding to Ser-20-phosphorylated p53 tetramers; (ii) DNA-stimulated binding to p53 tetramers; and (iii) inhibition of MDM2-mediated p53 ubiquitination. The active component of the IHD miniprotein was localized to a 75-amino-acid fragment corresponding to amino acids 401-475 on human p300. This minimal IHD miniprotein can function in vivo as a p53-binding polypeptide in assays including: (i) complex formation with VP16-LXXLL peptide motifs in the two-hybrid assay; (ii) action as a dominant negative inhibitor of p53 from p21 luciferase templates; and (iii) attenuation of endogenous p21 protein levels. Further, we show here that the IRF-1-dependent stabilization and reactivation of p53DeltaPRO protein (LXXLL+/PXXP-) can be neutralized by the minimal IHD miniprotein, suggesting that IHD can bind to the p53 LXXLL domain in vivo. Phage-peptide display to the IHD miniprotein gave rise to an LSQXTFSXLXXLL consensus binding site that displays significant homology to the LXXLL transactivation domain of p53. These data validate the IHD scaffold as an independent LXXLL peptide-binding domain within the p300 protein, complementing the known peptide-binding domains including IBiD, C/H1, and C/H3.  相似文献   

14.
Why doesn’t the F19A mutant of p53 bind to MDM2? Binding thermodynamics have suggested that the loss of packing interactions upon mutating Phe into Ala sidechain results in destabilizing the binding free energy between p53 and MDM2. Does this mutation also modulate the initial recognition between p53 and MDM2? We look at atomistic computer simulations of the process of the initial encounter between wild type p53 peptide and its F19A mutant with the N-terminal domain of MDM2. These simulations show that binding is characterized by a complex multistep process. It starts with the capture of F19 of wild type p53 by certain residues in the MDM2 binding pocket. This initial step anchors the peptide onto the surface of MDM2, and with the consequent reduction in the search space of the peptide, the peptide docks into the partially occluded surface of MDM2. This is similar to a crack forming in an otherwise occluded hydrophobic cavity in MDM2, and the peptide, docked through F19, modulates the propagation of this crack, which subsequently results in the stepwise docking of the rest of the peptide through insertions of W23 and L26. The lack of the bulky sidechain of F in the F19A mutant results in the absence of the initial “grasp” complex, and hence the mutant peptide diffuses randomly on the surface of MDM2 without binding. This is the first such demonstration of the possibility that a “kinetic” effect may partly underlie the destabilized thermodynamics of binding of F19A and is a feature that appears to be conserved in evolution. The observations by Wallace et al. (Mol Cell 2006; 23:251–63) that despite the inability of F19A to bind at the N-terminal domain of MDM2, it gets ubiquitinated, can now be partly understood based on a mechanism whereby the occupation of the binding pocket by ligands/peptides induces, via crack propagation and the dynamics of gatekeeper Y100, the ubiquitination signal for interactions between the acidic domain of MDM2 and the DNA binding domain of p53.  相似文献   

15.
16.
17.
18.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

19.
The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin–proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-binding domain of p53. A unique pseudo-substrate motif or “lid” in MDM2 is adjacent to its N-terminal hydrophobic pocket, and we have evaluated the effects of the flexible lid on the dual-site ubiquitination reaction mechanism catalyzed by MDM2. Deletion of this pseudo-substrate motif promotes MDM2 protein thermoinstability, indicating that the site can function as a positive regulatory element. Phospho-mimetic mutation in the pseudo-substrate motif at codon 17 (MDM2S17D) stabilizes the binding of MDM2 towards two distinct peptide docking sites within the p53 tetramer and enhances p53 ubiquitination. Molecular modeling orientates the phospho-mimetic pseudo-substrate motif in equilibrium over a charged surface patch on the MDM2 at Arg97/Lys98, and mutation of these residues to the MDM4 equivalent reverses the activating effect of the phospho-mimetic mutation on MDM2 function. These data highlight the ability of the pseudo-substrate motif to regulate the allosteric interaction between the N-terminal hydrophobic pocket of MDM2 and its central acidic domain, which stimulates the E3 ubiquitin ligase function of MDM2. This model of MDM2 regulation implicates an as yet undefined lid-kinase as a component of pro-oncogenic pathways that stimulate the E3 ubiquitin ligase function of MDM2 in cells.  相似文献   

20.
Hu M  Gu L  Li M  Jeffrey PD  Gu W  Shi Y 《PLoS biology》2006,4(2):e27
Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号