首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel continuous spectrophotometric assay to measure the activity of the debranching enzyme and α-amylase has been developed. The assay mixture comprises the debranching enzyme (GlgX from Escherichia coli) or α-amylase (PPA from porcine pancreas), a reducing end-specific α-glucosidase (MalZ), maltodextrin-branched β-cyclodextrin (Glcn-β-CD) as the substrate, and the glucose oxidase/peroxidase system (GOPOD). Due to its high reducing end specificity, the branch chains of the substrates are not hydrolyzed by MalZ. After hydrolysis by GlgX or PPA, the released maltodextrins are immediately hydrolyzed into glucose from the reducing end by MalZ, whose concentration is continuously measured by GOPOD at 510 nm in a thermostat spectrophotometer. The kinetic constants determined for GlgX (Km = 0.66 ± 0.02 mM and kcat = 76.7 ± 1.5 s−1) are within a reasonable range compared with those measured using high-performance anion-exchange chromatography (HPAEC). The assay procedure is convenient and sensitive, and it requires lower concentrations of enzymes and substrate compared with dinitrosalicylic acid (DNS) and HPAEC analysis.  相似文献   

2.
The crystal structures of the catalytic fragments of ‘lethal toxin’ from Clostridium sordellii and of ‘α-toxin’ from Clostridium novyi have been established. Almost half of the residues follow the chain fold of the glycosyl-transferase type A family of enzymes; the other half forms large α-helical protrusions that are likely to confer specificity for the respective targeted subgroup of Rho proteins in the cell. In the crystal, the active center of α-toxin contained no substrates and was disassembled, whereas that of lethal toxin, which was ligated with the donor substrate UDP-glucose and cofactor Mn2 +, was catalytically competent. Surprisingly, the structure of lethal toxin with Ca2 + (instead of Mn2 +) at the cofactor position showed a bound donor substrate with a disassembled active center, indicating that the strictly octahedral coordination sphere of Mn2 + is indispensable to the integrity of the enzyme. The homologous structures of α-toxin without substrate, distorted lethal toxin with Ca2 + plus donor, active lethal toxin with Mn2 + plus donor and the homologous Clostridium difficile toxin B with a hydrolyzed donor have been lined up to show the geometry of several reaction steps. Interestingly, the structural refinement of one of the three crystallographically independent molecules of Ca2 +-ligated lethal toxin resulted in the glucosyl half-chair conformation expected for glycosyl-transferases that retain the anomeric configuration at the C1″ atom. A superposition of six acceptor substrates bound to homologous enzymes yielded the position of the nucleophilic acceptor atom with a deviation of < 1 Å. The resulting donor-acceptor geometry suggests that the reaction runs as a circular electron transfer in a six-membered ring, which involves the deprotonation of the nucleophile by the β-phosphoryl group of the donor substrate UDP-glucose.  相似文献   

3.
The role of αPhe-291 residue in phosphate binding by Escherichia coli F1F0-ATP synthase was examined. X-ray structures of bovine mitochondrial enzyme suggest that this residue resides in close proximity to the conserved βR246 residue. Herein, we show that mutations αF291D and αF291E in E. coli reduce the ATPase activity of F1F0 membranes by 350-fold. Yet, significant oxidative phosphorylation activity is retained. In contrast to wild-type, ATPase activities of mutants were not inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium. Whereas, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by ∼75%, although reaction still occurred at residue βTyr-297, proximal to αPhe-291 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in βE (empty) catalytic sites, as shown previously by X-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild-type but not in mutants. In addition, our data suggest that the interaction of αPhe-291 with phosphate during ATP hydrolysis or synthesis may be distinct.  相似文献   

4.
5.
Di-O-α-maltosyl-β-cyclodextrin ((G2)2-β-CD) was synthesized from 6-O-α-maltosyl-β-cyclodextrin (G2-β-CD) via a transglycosylation reaction catalyzed by TreX, a debranching enzyme from Sulfolobus solfataricus P2. TreX showed no activity toward glucosyl-β-CD, but a transfer product (1) was detected when the enzyme was incubated with maltosyl-β-CD, indicating specificity for a branched glucosyl chain bigger than DP2. Analysis of the structure of the transfer product (1) using MALDI-TOF/MS and isoamylase or glucoamylase treatment revealed it to be dimaltosyl-β-CD, suggesting that TreX transferred the maltosyl residue of a G2-β-CD to another molecule of G2-β-CD by forming an α-1,6-glucosidic linkage. When [14C]-maltose and maltosyl-β-CD were reacted with the enzyme, the radiogram showed no labeled dimaltosyl-β-CD; no condensation product between the two substrates was detected, indicating that the synthesis of dimaltosyl-β-CD occurred exclusively via transglycosylation of an α-1,6-glucosidic linkage. Based on the HPLC elution profile, the transfer product (1) was identified to be isomers of 61,63- and 61,64-dimaltosyl-β-CD. Inhibition studies with β-CD on the transglycosylation activity revealed that β-CD was a mixed-type inhibitor, with a Ki value of 55.6 μmol/mL. Thus, dimaltosyl-β-CD can be more efficiently synthesized by a transglycosylation reaction with TreX in the absence of β-CD. Our findings suggest that the high yield of (G2)2-β-CD from G2-β-CD was based on both the transglycosylation action mode and elimination of the inhibitory effect of β-CD.  相似文献   

6.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

7.
Uracil phosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl-α-1-diphosphate (PRPP) and uracil to uridine monophosphate (UMP) and diphosphate (PPi). The tetrameric enzyme from Sulfolobus solfataricus has a unique type of allosteric regulation by cytidine triphosphate (CTP) and guanosine triphosphate (GTP). Here we report two structures of the activated state in complex with GTP. One structure (refined at 2.8-Å resolution) contains PRPP in all active sites, while the other structure (refined at 2.9-Å resolution) has PRPP in two sites and the hydrolysis products, ribose-5-phosphate and PPi, in the other sites. Combined with three existing structures of uracil phosphoribosyltransferase in complex with UMP and the allosteric inhibitor cytidine triphosphate (CTP), these structures provide valuable insight into the mechanism of allosteric transition from inhibited to active enzyme. The regulatory triphosphates bind at a site in the center of the tetramer in a different manner and change the quaternary arrangement. Both effectors contact Pro94 at the beginning of a long β-strand in the dimer interface, which extends into a flexible loop over the active site. In the GTP-bound state, two flexible loop residues, Tyr123 and Lys125, bind the PPi moiety of PRPP in the neighboring subunit and contribute to catalysis, while in the inhibited state, they contribute to the configuration of the active site for UMP rather than PRPP binding. The C-terminal Gly216 participates in a hydrogen-bond network in the dimer interface that stabilizes the inhibited, but not the activated, state. Tagging the C-terminus with additional amino acids generates an endogenously activated enzyme that binds GTP without effects on activity.  相似文献   

8.
An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60 °C and 4.0, respectively. The enzyme was stable for 1 h at 55 °C, showing a t50 of 53 min at 60 °C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The Km of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase).  相似文献   

9.
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His6) and purified. The protein is an α-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His6 is structurally a dimer of dimers. Incubation at temperatures above 37 °C correlated with a reduction of its α-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 °C. Refolding of gp11-His6 thermally denatured at 65 °C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (∼ 90%) and a smaller fraction of 2.4 S dimers (∼ 10%). This population of gp11-His6 was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His6 showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His6.  相似文献   

10.
Frederik A.J. Rotsaert 《BBA》2008,1777(2):211-219
We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 ∼ 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.  相似文献   

11.
Point mutations of the active-site residues Trp168, Tyr171, Trp275, Trp397, Trp570 and Asp392 were introduced to Vibrio carchariae chitinase A. The modeled 3D structure of the enzyme illustrated that these residues fully occupied the substrate binding cleft and it was found that their mutation greatly reduced the hydrolyzing activity against pNP-[GlcNAc]2 and colloidal chitin. Mutant W397F was the only exception, as it instead enhanced the hydrolysis of the pNP substrate to 142% and gave no activity loss towards colloidal chitin. The kinetic study with the pNP substrate demonstrated that the mutations caused impaired Km and kcat values of the enzyme. A chitin binding assay showed that mutations of the aromatic residues did not change the binding equilibrium. Product analysis by thin layer chromatography showed higher efficiency of W275G and W397F in G4–G6 hydrolysis over the wild type enzyme. Though the time course of colloidal chitin hydrolysis displayed no difference in the cleavage behavior of the chitinase variants, the time course of G6 hydrolysis exhibited distinct hydrolytic patterns between wild-type and mutants W275G and W397F. Wild type initially hydrolyzed G6 to G4 and G2, and finally G2 was formed as the major end product. W275G primarily created G2–G5 intermediates, and later G2 and G3 were formed as stable products. In contrast, W397F initially produced G1–G5, and then the high-Mr intermediates (G3–G5) were broken down to G1 and G2 end products. This modification of the cleavage patterns of chitooligomers suggested that residues Trp275 and Trp397 are involved in defining the binding selectivity of the enzyme to soluble substrates.  相似文献   

12.
Amylopectin fine structures were studied following limited hydrolysis of gelatinised waxy maize starch by amylases with a different level of inner chain attack (LICA). This was done by size exclusion chromatography as well as by debranching the (partially hydrolysed) amylopectin samples and studying the size distributions of the released chains. α-Amylases from Bacillus amyloliquefaciens and Aspergillus oryzae, with a relatively high LICA, drastically altered amylopectin chain length distribution and reduced the amylopectin molecular size (MS) significantly even at a low to moderate degree of hydrolysis (DH). Porcine pancreatic α-amylase (PPA), with a rather low LICA but a high multiple attack action on amylose, reduced the amylopectin MS much slower. Following hydrolysis by PPA to a DH of 10% and enzymic debranching of the amylopectin residue, several subpopulations of chains consisting of 2-12 glucose units were detected, indicating a multiple attack action on the amylopectin side chains. During the early stages of hydrolysis, the maltogenic Bacillus stearothermophilus α-amylase (BStA) preferentially hydrolysed the exterior chains of amylopectin. However, during the later phases, BStA also hydrolysed inner chains, presumably with a high multiple attack action. The present results clearly show that different enzymes can be used for (limited) conversion of amylopectin into structures differing in molecular weight and chain length distributions.  相似文献   

13.
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 α-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, α-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred α-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from α-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.  相似文献   

14.
Although core α1,6-fucosylation is commonly observed in N-glycans of both vertebrates and invertebrates, the responsible enzyme, α1,6-fucosyltransferase, has been much less characterized in invertebrates compared to vertebrates. To investigate the functions of α1,6-fucosyltransferase in insects, we cloned the cDNA for the α1,6-fucosyltransferase from Bombyx mori (Bmα1,6FucT) and characterized the recombinant enzyme prepared using insect cell lines. The coding region of Bmα1,6FucT consists of 1737 bp that code for 578 amino acids of the deduced amino acid sequence, showing significant similarity to other α1,6-fucosyltransferases. Enzyme activity assays demonstrated that Bmα1,6FucT is enzymatically active in spite of being less active compared to the human enzyme. The findings also indicate that Bmα1,6FucT, unlike human enzyme, is N-glycosylated and forms a disulfide-bonded homodimer. These findings contribute to a better understanding of roles of α1,6-fucosylation in invertebrates and also to the development of the more efficient engineering of N-glycosylation of recombinant glycoproteins in insect cells.  相似文献   

15.
Bacterial sialyltransferases of the glycosyltransferase family GT-80 exhibit pronounced hydrolase activity toward CMP-activated sialyl donor substrates. Using in situ proton NMR, we show that hydrolysis of CMP-Neu5Ac by Pasteurella dagmatis α2,3-sialyltransferase (PdST) occurs with axial-to-equatorial inversion of the configuration at the anomeric center to release the α-Neu5Ac product. We propose a catalytic reaction through a single displacement-like mechanism where water replaces the sugar substrate as a sialyl group acceptor. PdST variants having His284 in the active site replaced by Asn, Asp or Tyr showed up to 104-fold reduced activity, but catalyzed CMP-Neu5Ac hydrolysis with analogous inverting stereochemistry. The proposed catalytic role of His284 in the PdST hydrolase mechanism is to facilitate the departure of the CMP leaving group.  相似文献   

16.
An enzyme from the amidohydrolase family from Deinococcus radiodurans (Dr-OPH) with homology to phosphotriesterase has been shown to exhibit activity against both organophosphate (OP) and lactone compounds. We have characterized the physical properties of Dr-OPH and have found it to be a highly thermostable enzyme, remaining active after 3 h of incubation at 60 °C and withstanding incubation at temperatures up to 70 °C. In addition, it can withstand concentrations of at least 200 mg/mL. These properties make Dr-OPH a promising candidate for development in commercial applications. However, compared to the most widely studied OP-degrading enzyme, that from Pseudomonas diminuta, Dr-OPH has low hydrolytic activity against certain OP substrates. Therefore, we sought to improve the OP-degrading activity of Dr-OPH, specifically toward the pesticides ethyl and methyl paraoxon, using structure-based and random approaches. Site-directed mutagenesis, random mutagenesis, and site-saturation mutagenesis were utilized to increase the OP-degrading activity of Dr-OPH. Out of a screen of more than 30,000 potential mutants, a total of 26 mutant enzymes were purified and characterized kinetically. Crystal structures of w.t. Dr-OPH, of Dr-OPH in complex with a product analog, and of 7 mutant enzymes were determined to resolutions between 1.7 and 2.4 Å. Information from these structures directed the design and production of 4 additional mutants for analysis. In total, our mutagenesis efforts improved the catalytic activity of Dr-OPH toward ethyl and methyl paraoxon by 126- and 322-fold and raised the specificity for these two substrates by 557- and 183-fold, respectively. Our work highlights the importance of an iterative approach to mutagenesis, proving that large rate enhancements are achieved when mutations are made in already active mutants. In addition, the relationship between the kinetic parameters and the introduced mutations has allowed us to hypothesize on those factors most important for maintaining the structure and function of the enzyme.  相似文献   

17.
Glycogen debranching enzyme (GDE) in mammals and yeast exhibits α-1,4-transferase and α-1,6-glucosidase activities within a single polypeptide chain and facilitates the breakdown of glycogen by a bi-functional mechanism. Each enzymatic activity of GDE is suggested to be associated with distinct domains; α-1,4-glycosyltransferase activity with the N-terminal domain and α-1,6-glucosidase activity with the C-terminal domain. Here, we present the biochemical features of the GDE from Saccharomyces cerevisiae using the substrate glucose(n)-β-cyclodextrin (Gn-β-CD). The bacterially expressed and purified GDE N-terminal domain (aa 1–644) showed α-1,4-transferase activity on maltotetraose (G4) and G4-β-CD, yielding various lengths of (G)n. Surprisingly, the N-terminal domain also exhibited α-1,6-glucosidase activity against G1-β-CD and G4-β-CD, producing G1 and β-CD. Mutational analysis showed that residues D535 and E564 in the N-terminal domain are essential for the transferase activity but not for the glucosidase activity. These results indicate that the N-terminal domain (1–644) alone has both α-1,4-transferase and the α-1,6-glucosidase activities and suggest that the bi-functional activity in the N-domain may occur via one active site, as observed in some archaeal debranching enzymes.  相似文献   

18.
A chip-based biosensor technology using surface plasmon resonance (SPR) was developed for studying the interaction of ligands and G protein-coupled receptors (GPCRs). GPCRs, the fourth largest superfamily in the human genome, are the largest class of targets for drug discovery.We have expressed the three subtypes of α2-adrenergic receptor (α2-AR), a prototypical GPCR as functional fusion proteins in baculovirus-infected insect cells. The localization of the expressed receptor was observed in intracellular organelles, as detected by eGFP fluorescence. In addition, the deletion mutants of α2B-AR, with a deletion in the 3rd intracellular loop, exhibited unaltered Kd values and enhanced stability, thus making them more promising candidates for crystallization. SPR demonstrated that small molecule ligands can bind the detergent-solubilized receptor, thus proving that α2-AR is active even in a lipid-free environment. The Kd values obtained from the biosensor analysis and traditional ligand binding studies correlate well with each other. This is the first demonstration of the binding of a small molecule to the detergent-solubilized state of α2-ARs and interaction of low-molecular mass-ligands in real time in a label-free environment. This technology will also allow the development of high throughput platform for screening a large number of compounds for generation of leads.  相似文献   

19.
The hydrolysis of 1,4,5,6-tetrahydro-6-oxonicotinate to 2-formylglutarate is a central step in the catabolism of nicotinate in several Clostridia and Proteobacteria. This reaction is catalyzed by the novel enzyme enamidase, a new member of the amidohydrolase superfamily as indicated by its unique reaction, sequence relationship, and the stoichiometric binding of iron and zinc. A hallmark of enamidase is its capability to catalyze a two-step reaction: the initial decyclization of 1,4,5,6-tetrahydro-6-oxonicotinate leading to 2-(enamine)glutarate followed by an additional hydrolysis step yielding (S)-2-formylglutarate. Here, we present the crystal structure of enamidase from Eubacterium barkeri at 1.9 Å resolution, providing a structural basis for catalysis and suggesting a mechanism for its exceptional activity and enantioselectivity. The enzyme forms a 222-symmetric tetramer built up by a dimer of dimers. Each enamidase monomer consists of a composite β-sandwich domain and an (α/β)8-TIM-barrel domain harboring the active site. With its catalytic binuclear metal center comprising both zinc and iron ions, enamidase represents a special case of subtype II amidohydrolases.  相似文献   

20.
Extracellular glucoamylase of Colletotrichum sp. KCP1 produced through solid state fermentation was purified by two steps purification process comprising ammonium sulphate precipitation followed by gel permeation chromatography (GPC). The Recovery of glucoamylase after GPC was 50.40 % with 19.3-fold increase in specific activity. The molecular weight of enzyme was found to be 162.18 kDa by native-PAGE and was dimeric protein of two sub-units with molecular weight of 94.62 and 67.60 kDa as determined by SDS-PAGE. Activation energy for starch hydrolysis was 26.45 kJ mol−1 while temperature quotient (Q10) was found to be 1.9. The enzyme was found to be stable over wide pH range and thermally stable at 40–50 °C up to 120 min while exhibited maximum activity at 50 °C with pH 5.0. The pKa1 and pKa2 of ionisable groups of active site controlling Vmax were 3.5 and 6.8, respectively. Vmax, Km and Kcat for starch hydrolysis were found to be 58.82 U ml−1, 1.17 mg (starch) ml−1 and 449 s−1, respectively. Activation energy for irreversible inactivation (Ea(d)) of glucoamylase was 74.85 kJ mol−1. Thermodynamic parameters of irreversible inactivation of glucoamylase and starch hydrolysis were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号