首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The SV40 capsid is composed primarily of 72 pentamers of the VP1 major capsid protein. Although the capsid also contains the minor capsid protein VP2 and its amino-terminally truncated form VP3, their roles in capsid assembly remain unknown. An in vitro assembly system was used to investigate the role of VP2 in the assembly of recombinant VP1 pentamers. Under physiological salt and pH conditions, VP1 alone remained dissociated, and at pH 5.0, it assembled into tubular structures. A stoichiometric amount of VP2 allowed the assembly of VP1 pentamers into spherical particles in a pH range of 7.0 to 4.0. Electron microscopy observation, sucrose gradient sedimentation analysis, and antibody accessibility tests showed that VP2 is incorporated into VP1 particles. The functional domains of VP2 important for VP1 binding and for enhancing VP1 assembly were further explored with a series of VP2 deletion mutants. VP3 also enhanced VP1 assembly, and a region common to VP2 and VP3 (amino acids 119-272) was required to promote VP1 pentamer assembly. These results are relevant for controlling recombinant capsid formation in vitro, which is potentially useful for the in vitro development of SV40 virus vectors.  相似文献   

2.
3.
Abstract

It has been established that both in virions and in infected cells, the cellular core histones fold the SV40 DNA into nucleosomes to form the SV40 chromosome or chromatin. We and others have begun to examine how the capsid proteins assemble the SV40 chromatin into virions and to investigate whether these proteins interact with the encapsidated chromatin. To follow the pathway of virus assembly, we have analyzed the nucleoproteins which accumulate in cells infected with the SV40 mutants temperature-sensitive in assembly: tsC, tsBC, and tsB. (The temperature-sensitivity of these mutants result from alterations in the amino acid sequence of the major capsid protein VP1). We have found that mutants belonging to the same class accumulate similar types of nucleoproteins at the nonpermissive temperature (40°C) and thus, share characteristics in common. For example, the tsC mutants accumulate only the 75 S chromatin. Both tsBC and tsB mutants produce in addition to chromatin, nucleoprotein complexes which sediment broadly from 100–160 S and contain all the three capsid proteins VP1, VP2, and VP3. These nucleoproteins can be distinguished morphologically, however. Under the electron microscope, the tsBC 100–160 S nucleoproteins appear as chromatin to which a small cluster of the capsid proteins is attached; the tsB nucleoproteins appear as partially assembled virions. In addition, we find that the 220 S virions are assembled in cells coinfected with tsB and tsC mutants at 40°C, in agreement with genetic analysis. Our observations favor the hypothesis that the VP1 protein contains three discrete domains. We speculate that each domain may play a specific function in SV40 assembly. To gain more insight into VP1-VP1 interactions, we have examined the nucleoproteins which result from treatment of the mature wild-type virions with increasing concentrations of the reducing agent DTT. In the presence of as low a concentration of DTT as 0.1 mM, the virion shell can be penetrated by micrococcal nuclease, which then cleaves the viral DNA. This result indicates that some of the disulfide bonds bridging the VP1 proteins are on the virion surface.  相似文献   

4.
Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles.  相似文献   

5.
C Reynolds  D Birnby    M Chow 《Journal of virology》1992,66(3):1641-1648
Poliovirus mutants in neutralizing antigenic site 3B were constructed by replacing the glutamic acid residue at amino acid 74 of capsid protein VP2 (VP2074E), using site-specific mutagenesis methods. All viable mutants display small-plaque phenotypes. Characterization of these mutants indicates that capsid assembly is perturbed. Although the defect in capsid assembly reduces the yield of mutant virus particles per cell, the resultant assembled particle is wild-type-like in structure and infectivity. Analyses of capsid assembly intermediates show a transient accumulation of the unprocessed capsid protein precursor, P1, indicating that cleavage of the mutant P1 by the 3CD protease is retarded. The mutant VP0-VP3-VP1 complex generated upon P1 cleavage appears assembly competent, forming pentamer and empty capsid assembly intermediates and infectious virion particles. Although the structure of the infectious mutant virus is virtually identical with that of the wild-type virus, the thermal stability of the mutant virus is dramatically increased over that of the wild-type virus. Thus, mutations at this residue are pleiotropic, altering the kinetics of capsid assembly and generating a virus that is more thermostable and more resistant to neutralization by the site 3B monoclonal antibodies.  相似文献   

6.
Two groups of temperature-sensitive (ts) mutants, termed ts B and ts C, have mutations in the major capsid protein of SV40, Vp1. These mutants have virion assembly defects at the nonpermissive temperature, but can complement one another when two mutants, one from each group, coinfect a cell. A third group of mutants, termed ts BC, have related phenotypes, but do not complement other mutants. We found that the mutations fall into two structural and functional classes. All ts C and one ts BC mutations map to the region close to the Ca2+ binding sites, and are predicted to disrupt the insertion of the distal part of the C-terminal invading arm (C-arm) into the receiving clamp. They share a severe defect in assembly at the nonpermissive temperature, with few capsid proteins attached to the viral minichromosome. By contrast, all ts B and most ts BC mutations map to a contiguous region including acceptor sites for the proximal part of the C-arm and intrapentamer contacts. These mutants form assembly intermediates that carry substantial capsid proteins on the minichromosome. Thus, accurate virion assembly is prevented by mutations that disrupt interactions between the receiving pentamer and both the proximal and distal parts of the C-arms, with the latter having a greater effect. The distinct spatial localization and assembly defects of the two classes of mutants provide a rationale for their intracistronic complementation and suggest models of capsid assembly.  相似文献   

7.
Human rhinovirus 14 has a pseudo T = 3 icosahedral structure in which 60 copies of the three larger capsid proteins VP1, VP2 and VP3 are arranged in an icosahedral surface lattice, reminiscent of T = 3 viruses such as tomato bushy stunt virus and southern bean mosaic virus. The overall secondary and tertiary structures of VP1, VP2 and VP3 are very similar. The structure of human rhinovirus 14, which was refined at a resolution of 3.0 A [R = 0.16 for reflections with F greater than 3 sigma(F)], is here analyzed in detail. Quantitative analysis of the surface areas of contact (proportional to hydrophobic free energy of association) supports the previously assigned arrangement within the promoter, in which interactions between VP1 and VP3 predominate. Major contacts among VP1, VP2 and VP3 are between the beta-barrel moieties. VP4 is associated with the capsid interior by a distributed network of contacts with VP1, VP2 and VP3 within a promoter. As the virion assembly proceeds, the solvent-accessible surface area becomes increasingly hydrophilic in character. A mixed parallel and antiparallel seven-stranded sheet is composed of the beta C, beta H, beta E and beta F strands of VP3 in one pentamer and beta A1 and beta A2 of VP2 and the VP1 amino terminus in another pentamer. This association plays an essential role in holding pentamers together in the mature virion as this contact region includes more than half of the total short non-bonded contacts between pentamers. Contacts between protomers within pentamers are more extensive than the contacts between pentamers, accounting in part for the stability of pentamers. The previously identified immunogenic regions are correlated with high solvent accessibility, accessibility to large probes and also high thermal parameters. Surface residues in the canyon, the putative cellular receptor recognition site, have lower thermal parameters than other portions of the human rhinovirus 14 surface. Many of the water molecules in the ordered solvent model are located at subunit interfaces. A number of unusual crevices exist in the protein shell of human rhinovirus 14, including the hydrophobic pocket in VP1 which is the locus of binding for the WIN antiviral agents. These may be required for conformational flexibility during assembly and disassembly. The structures of the beta-barrels of human rhinovirus 14 VP1, VP2 and VP3 are compared with each other and with the southern bean mosaic virus coat protein.  相似文献   

8.
In maturing retroviral virions, CA protein assembles to form a capsid shell that is essential for infectivity. The structure of the two folded domains [N-terminal domain (NTD) and C-terminal domain (CTD)] of CA is highly conserved among various retroviruses, and the capsid assembly pathway, although poorly understood, is thought to be conserved as well. In vitro assembly reactions with purified CA proteins of the Rous sarcoma virus (RSV) were used to define factors that influence the kinetics of capsid assembly and provide insights into underlying mechanisms. CA multimerization was triggered by multivalent anions providing evidence that in vitro assembly is an electrostatically controlled process. In the case of RSV, in vitro assembly was a well-behaved nucleation-driven process that led to the formation of structures with morphologies similar to those found in virions. Isolated RSV dimers, when mixed with monomeric protein, acted as efficient seeds for assembly, eliminating the lag phase characteristic of a monomer-only reaction. This demonstrates for the first time the purification of an intermediate on the assembly pathway. Differences in the intrinsic tryptophan fluorescence of monomeric protein and the assembly-competent dimer fraction suggest the involvement of the NTD in the formation of the functional dimer. Furthermore, in vitro analysis of well-characterized CTD mutants provides evidence for assembly dependence on the second domain and suggests that the establishment of an NTD-CTD interface is a critical step in capsid assembly initiation. Overall, the data provide clear support for a model whereby capsid assembly within the maturing virion is dependent on the formation of a specific nucleating complex that involves a CA dimer and is directed by additional virion constituents.  相似文献   

9.
Unlike all other picornaviruses, the primary cleavage of the hepatitis A virus (HAV) polyprotein occurs at the 2A/2B junction and is carried out by the only proteinase encoded by the virus, 3C(pro). The resulting P1-2A capsid protein precursor is subsequently cleaved by 3C(pro) to generate VP0, VP3, and VP1-2A, which associate as pentamers. An unidentified cellular proteinase acting at the VP1/2A junction releases the mature capsid protein VP1 from VP1-2A later in the morphogenesis process. Although these aspects of polyprotein processing are well characterized, the function of 2A is unknown. To study its role in the viral life cycle, we assessed the infectivity of synthetic, genome-length RNAs containing 11 different in-frame deletions in the 2A region. Deletions in the N-terminal 40% of 2A abolished infectivity, whereas deletions in the C-terminal 60% resulted in viruses with a small-focus replication phenotype. C-terminal deletions in 2A had no effect on RNA replication kinetics under one-step growth conditions, nor did they have an effect on capsid protein synthesis and 3C(pro)-mediated processing. However, C-terminal deletions in 2A altered the VP1/2A cleavage, resulting in accumulation of uncleaved VP1-2A precursor in virions and possibly accounting for a delay in the appearance of infectious particles with these mutants, as well as a fourfold decrease in specific infectivity of the virus particles. When the capsid proteins were expressed from recombinant vaccinia viruses, the N-terminal part of 2A was required for efficient cleavage of the P1-2A precursor by 3C(pro) and assembly of structural precursors into pentamers. These data indicate that the N-terminal domain of 2A must be present as a C-terminal extension of P1 for folding of the capsid protein precursor to allow efficient 3C(pro)-mediated cleavages and to promote pentamer assembly, after which cleavage at the VP1/2A junction releases the mature VP1 protein, a process that appears to be necessary to produce highly infectious particles.  相似文献   

10.
The surface of polyomavirus virions is composed of pentameric knobs of the major capsid protein, VP1. In previously studied polyomavirus species, such as SV40, two interior capsid proteins, VP2 and VP3, emerge from the virion to play important roles during the infectious entry process. Translation of the VP3 protein initiates at a highly conserved Met-Ala-Leu motif within the VP2 open reading frame. Phylogenetic analyses indicate that Merkel cell polyomavirus (MCV or MCPyV) is a member of a divergent clade of polyomaviruses that lack the conserved VP3 N-terminal motif. Consistent with this observation, we show that VP3 is not detectable in MCV-infected cells, VP3 is not found in native MCV virions, and mutation of possible alternative VP3-initiating methionine codons did not significantly affect MCV infectivity in culture. In contrast, VP2 knockout resulted in a >100-fold decrease in native MCV infectivity, despite normal virion assembly, viral DNA packaging, and cell attachment. Although pseudovirus-based experiments confirmed that VP2 plays an essential role for infection of some cell lines, other cell lines were readily transduced by pseudovirions lacking VP2. In cell lines where VP2 was needed for efficient infectious entry, the presence of a conserved myristoyl modification on the N-terminus of VP2 was important for its function. The results show that a single minor capsid protein, VP2, facilitates a post-attachment stage of MCV infectious entry into some, but not all, cell types.  相似文献   

11.
The poliovirus capsid precursor polyprotein, P1, is cotranslationally modified by the addition of myristic acid. We have examined the importance of myristylation of the P1 capsid precursor during the poliovirus assembly process by using a recently described recombinant vaccinia virus expression system which allows the independent production of the poliovirus P1 protein and the poliovirus 3CD proteinase (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). We constructed a site-directed mutation in the poliovirus cDNA encoding an alanine at the second amino acid position of P1 in place of the glycine residue required for the myristic acid addition and isolated a recombinant vaccinia virus (VVP1myr-) that expressed a nonmyristylated form of the P1 capsid precursor. The 3CD proteinase expressed by a coinfecting vaccinia virus, VVP3, proteolytically processed the nonmyristylated precursor P1 expressed by VVP1myr-. However, the processed capsid proteins, VP0, VP3, and VP1, did not assemble into 14S or 75S subviral particles, in contrast to the VP0, VP3, and VP1 proteins derived from the myristylated P1 precursor. When cells were coinfected with VVP1myr- and poliovirus type 1, the nonmyristylated P1 precursor expressed by VVP1myr- was processed by 3CD expressed by poliovirus, and the nonmyristylated VP0-VP3-VP1 (VP0-3-1) protomers were incorporated into capsid particles and virions which sedimented through a 30% sucrose cushion. Thus, the nonmyristylated P1 precursor and VP0-3-1 protomers were not excluded from sites of virion assembly, and the assembly defects observed for the nonmyristylated protomers were overcome in the presence of myristylated capsid protomers expressed by poliovirus. We conclude that myristylation of the poliovirus P1 capsid precursor plays an important role during poliovirus assembly by facilitating the appropriate interactions required between 5S protomer subunits to form stable 14S pentamers. The results of these studies demonstrate that the independent expression of the poliovirus P1 and 3CD proteins by using recombinant vaccinia viruses provides a unique experimental tool for analyzing the dynamics of the poliovirus assembly process.  相似文献   

12.
The G-loop is a 10-residue glycine-rich loop that protrudes from the surface of the mature bacteriophage HK97 capsid at the C-terminal end of the long backbone helix of major capsid protein subunits. The G-loop is essential for assembly, is conserved in related capsid and encapsulin proteins, and plays its role during HK97 capsid assembly by making crucial contacts between the hill-like hexamers and pentamers in precursor proheads. These contacts are not preserved in the flattened capsomers of the mature capsid. Aspartate 231 in each of the ~ 400 G-loops interacts with lysine 178 of the E-loop (extended loop) of a subunit on an adjacent capsomer. Mutations disrupting this interaction prevented correct assembly and, in some cases, induced abnormal assembly into tubes, or small, incomplete capsids. Assembly remained defective when D231 and K178 were replaced with larger charged residues or when their positions were exchanged. Second-site suppressors of lethal mutants containing substitution D231L replaced the ionic interaction with new interactions between neutral and hydrophobic residues of about the same size: D231L/K178V, D231L/K178I, and D231L/K178N. We conclude that it is not the charge but the size and shape of the side chains of residues 178 and 231 that are important. These two residues control the geometry of contacts between the E-loop and the G-loop, which apparently must be precisely spaced and oriented for correct assembly to occur. We present a model for how the G-loop could control HK97 assembly and identify G-loop-like protrusions in other capsid proteins that may play analogous roles.  相似文献   

13.
Polymorphism in the assembly of polyomavirus capsid protein VP1.   总被引:16,自引:2,他引:14       下载免费PDF全文
Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid.  相似文献   

14.
The P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure–function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the 1H, 15N, and 13C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded β-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.  相似文献   

15.
The three-dimensional structure of the Sabin strain of type 3 poliovirus has been determined at 2.4 A resolution. Significant structural differences with the Mahoney strain of type 1 poliovirus are confined to loops and terminal extensions of the capsid proteins, occur in all of the major antigenic sites of the virion and typically involve insertions, deletions or the replacement of prolines. Several newly identified components of the structure participate in assembly-dependent interactions which are relevant to the biologically important processes of viral assembly and uncoating. These include two sites of lipid substitution, two putative nucleotides and a beta sheet formed by the N-termini of capsid proteins VP4 and VP1. The structure provides an explanation for the temperature sensitive phenotype of the P3/Sabin strain. Amino acids that regulate temperature sensitivity in type 3 poliovirus are located in the interfaces between promoters, in the binding site for a lipid substituent and in an assembly-dependent extended beta sheet that stabilizes the association of pentamers. Several lines of evidence indicate that these structural components also control conformational transitions at various stages of the viral life cycle.  相似文献   

16.
Simian virus 40 chromatin interaction with the capsid proteins   总被引:7,自引:0,他引:7  
It has been established that both in virions and in infected cells, the cellular core histones fold the SV40 DNA into nucleosomes to form the SV40 chromosome or chromatin. We and others have begun to examine how the capsid proteins assemble the SV40 chromatin into virions and to investigate whether these proteins interact with the encapsidated chromatin. To follow the pathway of virus assembly, we have analyzed the nucleoproteins which accumulate in cells infected with the SV40 mutants temperature-sensitive in assembly: tsC, tsBC, and tsB. (The temperature-sensitivity of these mutants result from alterations in the amino acid sequence of the major capsid protein VP1). We have found that mutants belonging to the same class accumulate similar types of nucleoproteins at the nonpermissive temperature (40 degrees C) and thus, share characteristics in common. For example, the tsC mutants accumulate only the 75 S chromatin. Both tsBC and tsB mutants produce in addition to chromatin, nucleoprotein complexes which sediment broadly from 100-160 S and contain all the three capsid proteins VP1, VP2, and VP3. These nucleoproteins can be distinguished morphologically, however. Under the electron microscope, the tsBC 100-160 S nucleoproteins appear as chromatin to which a small cluster of the capsid proteins is attached; the tsB nucleoproteins appear as partially assembled virions. In addition, we find that the 220 S virions are assembled in cells coinfected with tsB and tsC mutants at 40 degrees C, in agreement with genetic analysis. Our observations favor the hypothesis that the VP1 protein contains three discrete domains. We speculate that each domain may play a specific function in SV40 assembly. To gain more insight into VP1-VP1 interactions, we have examined the nucleoproteins which result from treatment of the mature wild-type virions with increasing concentrations of the reducing agent DTT. In the presence of as low a concentration of DTT as 0.1 mM, the virion shell can be penetrated by micrococcal nuclease, which then cleaves the viral DNA. This result indicates that some of the disulfide bonds bridging the VP1 proteins are on the virion surface.  相似文献   

17.
The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP232 heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP232 heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid.  相似文献   

18.
To analyze the subcellular trafficking of herpesvirus capsids, the small capsid protein has been labeled with different fluorescent proteins. Here, we analyzed the infectivity of several HSV1(17(+)) strains in which the N-terminal region of the non-essential small capsid protein VP26 had been tagged at different positions. While some variants replicated with similar kinetics as their parental wild type strain, others were not infectious at all. Improper tagging resulted in the aggregation of VP26 in the nucleus, prevented efficient nuclear egress of viral capsids, and thus virion formation. Correlative fluorescence and electron microscopy showed that these aggregates had sequestered several other viral proteins, but often did not contain viral capsids. The propensity for aggregate formation was influenced by the type of the fluorescent protein domain, the position of the inserted tag, the cell type, and the progression of infection. Among the tags that we have tested, mRFPVP26 had the lowest tendency to induce nuclear aggregates, and showed the least reduction in replication when compared to wild type. Our data suggest that bona fide monomeric fluorescent protein tags have less impact on proper assembly of HSV1 capsids and nuclear capsid egress than tags that tend to dimerize. Small chemical compounds capable of inducing aggregate formation of VP26 may lead to new antiviral drugs against HSV infections.  相似文献   

19.
Adeno-associated virus capsids are composed of three proteins, VP1, VP2, and VP3. Although VP1 is necessary for viral infection, it is not essential for capsid formation. The other capsid proteins, VP2 and VP3, are sufficient for capsid formation, but the functional roles of each protein are still not well understood. By analyzing a series of deletion mutants of VP2, we identified a region necessary for nuclear transfer of VP2 and found that the efficiency of nuclear localization of the capsid proteins and the efficiency of virus-like particle (VLP) formation correlated well. To confirm the importance of the nuclear localization of the capsid proteins, we fused the nuclear localization signal of simian virus 40 large T antigen to VP3 protein. We show that this fusion protein could form VLP, indicating that the VP2-specific region located on the N-terminal side of the protein is not structurally required. This finding suggests that VP3 has sufficient information for VLP formation and that VP2 is necessary only for nuclear transfer of the capsid proteins.  相似文献   

20.
BK virus (BKV) is a ubiquitous pathogen that establishes a persistent infection in the urinary tract of 80% of the human population. Like other polyomaviruses, the major capsid protein of BKV, virion protein 1 (VP1), is critical for host cell receptor recognition and for proper virion assembly. BKV uses a carbohydrate complex containing alpha(2,3)-linked sialic acid attached to glycoprotein and glycolipid motifs as a cellular receptor. To determine the amino acids important for BKV binding to the sialic acid portion of the complex, we generated a series of 17 point mutations in VP1 and scored them for viral growth. The first set of mutants behaved identically to wild-type virus, suggesting that these amino acids were not critical for virus propagation. Another group of VP1 mutants rendered the virus nonviable. These mutations failed to protect viral DNA from DNase I digestion, indicating a role for these domains in capsid assembly and/or packaging of DNA. A third group of VP1 mutations packaged DNA similarly to the wild type but failed to propagate. The initial burst size of these mutations was similar to that of the wild type, indicating that there is no defect in the lytic release of the mutated virions. Binding experiments revealed that a subset of the BKV mutants were unable to attach to their host cells. These motifs are likely important for sialic acid recognition. We next mapped these mutations onto a model of BKV VP1 to provide atomic insight into the role of these sites in the binding of sialic acid to VP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号