首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rotavirus inner capsid particle, known as the “double-layered particle” (DLP), is the “payload” delivered into a cell in the process of viral infection. Its inner and outer protein layers, composed of viral protein (VP) 2 and VP6, respectively, package the 11 segments of the double-stranded RNA (dsRNA) of the viral genome, as well as about the same number of polymerase molecules (VP1) and capping-enzyme molecules (VP3). We have determined the crystal structure of the bovine rotavirus DLP. There is one full particle (outer diameter ∼ 700 Å) in the asymmetric unit of the P212121 unit cell of dimensions a = 740 Å, b = 1198 Å, and c = 1345 Å. A three-dimensional reconstruction from electron cryomicroscopy was used as a molecular replacement model for initial phase determination to about 18.5 Å resolution, and the 60-fold redundancy of icosahedral particle symmetry allowed phases to be extended stepwise to the limiting resolution of the data (3.8 Å). The structure of a VP6 trimer (determined previously by others) fits the outer layer density with very little adjustment. The T = 13 triangulation number of that layer implies that there are four and one-third VP6 trimers per icosahedral asymmetric unit. The inner layer has 120 copies of VP2 and thus 2 copies per icosahedral asymmetric unit, designated VP2A and VP2B. Residues 101-880 fold into a relatively thin principal domain, comma-like in outline, shaped such that only rather modest distortions (concentrated at two “subdomain” boundaries) allow VP2A and VP2B to form a uniform layer with essentially no gaps at the subunit boundaries, except for a modest pore along the 5-fold axis. The VP2 principal domain resembles those of the corresponding shells and homologous proteins in other dsRNA viruses: λ1 in orthoreoviruses and VP3 in orbiviruses. Residues 1-80 of VP2A and VP2B fold together with four other such pairs into a “5-fold hub” that projects into the DLP interior along the 5-fold axis; residues 81-100 link the 10 polypeptide chains emerging from a 5-fold hub to the N-termini of their corresponding principal domains, clustered into a decameric assembly unit. The 5-fold hub appears to have several distinct functions. One function is to recruit a copy of VP1 (or of a VP1-VP3 complex), potentially along with a segment of plus-strand RNA, as a decamer of VP2 assembles. The second function is to serve as a shaft around which can coil a segment of dsRNA. The third function is to guide nascent mRNA, synthesized in the DLP interior by VP1 and 5′-capped by the action of VP3, out through a 5-fold exit channel. We propose a model for rotavirus particle assembly, based on known requirements for virion formation, together with the structure of the DLP and that of VP1, determined earlier.  相似文献   

2.
Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a “glue” between neighboring hexameric capsomers, forming a “cage” that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 Å resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.  相似文献   

3.
Nudaurelia capensis ω virus is a T = 4, icosahedral virus with a bipartite, positive-sense RNA genome. Expression of the coat protein gene in a baculovirus system was previously shown to result in the formation of procapsids when purified at pH 7.6. Procapsids are round, porous particles (480 Å diameter) and have T = 4 quasi-symmetry. Reduction of pH from 7.6 to 5.0 resulted in virus-like particles (VLP5.0) that are morphologically identical with authentic virions, with an icosahedral-shaped capsid and a maximum dimension of 410 Å. VLP5.0 undergoes a maturation cleavage between residues N570 and F571, creating the covalently independent γ peptide (residues 571-641) that remains associated with the particle. This cleavage also occurs in authentic virions, and in each case, it renders the morphological change irreversible (i.e., capsids do not expand when the pH is raised back to 7.6). However, a non-cleavable mutant, N570T, undergoes the transition reversibly (NT7.6 ↔ NT5.0). We used electron cryo-microscopy and three-dimensional image reconstruction to study the icosahedral structures of NT7.6, NT5.0, and VLP5.0 at about 8, 6, and 6 Å resolution, respectively. We employed the 2. 8-Å X-ray model of the mature virus, determined at pH 7.0 (XR7.0), to establish (1) how and why procapsid and capsid structures differ, (2) why lowering pH drives the transition, and (3) why the non-cleaving NT5.0 is reversible. We show that procapsid assembly minimizes the differences in quaternary interactions in the particle. The two classes of 2-fold contacts in the T = 4 surface lattice are virtually identical, both mediated by similarly positioned but dynamic γ peptides. Furthermore, quasi and icosahedral 3-fold interactions are indistinguishable. Maturation results from neutralizing the repulsive negative charge at subunit interfaces with significant differentiation of quaternary interactions (one 2-fold becomes flat, mediated by a γ peptide, while the other is bent with the γ peptide disordered) and dramatic stabilization of the particle. The γ peptide at the flat contact remains dynamic when cleavage cannot occur (NT5.0) but becomes totally immobilized by noncovalent interactions after cleavage (VLP5.0).  相似文献   

4.
The tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼ 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼ 10− 4 of packaged DNA in all particles) and are initially detected by nondenaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T = 7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼ 15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (< 28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) form a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings such as those seen in other tailed dsDNA bacteriophages. The distance between the icosahedral shell and the outermost DNA ring decreases in the mature, fully packaged phage structure. These results suggest that, in the early stage of DNA packaging, the dsDNA genome is randomly distributed inside the capsid, not preferentially packaged against the inner surface of the capsid shell, and that the multiple concentric dsDNA rings seen later are the results of pressure-driven close-packing.  相似文献   

5.
The structure of the Leviviridae bacteriophage φCb5 virus-like particle has been determined at 2.9 Å resolution and the structure of the native bacteriophage φCb5 at 3.6 Å. The structures of the coat protein shell appear to be identical, while differences are found in the organization of the density corresponding to the RNA. The capsid is built of coat protein dimers and in shape corresponds to a truncated icosahedron with T = 3 quasi-symmetry. The capsid is stabilized by four calcium ions per icosahedral asymmetric unit. One is located at the symmetry axis relating the quasi-3-fold related subunits and is part of an elaborate network of hydrogen bonds stabilizing the interface. The remaining calcium ions stabilize the contacts within the coat protein dimer. The stability of the φCb5 particles decreases when calcium ions are chelated with EDTA. In contrast to other leviviruses, φCb5 particles are destabilized in solution with elevated salt concentration. The model of the φCb5 capsid provides an explanation of the salt-induced destabilization of φCb5, since hydrogen bonds, salt bridges and calcium ions have important roles in the intersubunit interactions.Electron density of three putative RNA nucleotides per icosahedral asymmetric unit has been observed in the φCb5 structure. The nucleotides mediate contacts between the two subunits forming a dimer and a third subunit in another dimer. We suggest a model for φCb5 capsid assembly in which addition of coat protein dimers to the forming capsid is facilitated by interaction with the RNA genome. The φCb5 structure is the first example in the levivirus family that provides insight into the mechanism by which the genome-coat protein interaction may accelerate the capsid assembly and increase capsid stability.  相似文献   

6.
Cytomegalovirus (CMV) is distinct among members of the Herpesviridae family for having the largest dsDNA genome (230 kb). Packaging of large dsDNA genome is known to give rise to a highly pressurized viral capsid, but molecular interactions conducive to the formation of CMV capsid resistant to pressurization have not been described. Here, we report a cryo electron microscopy (cryoEM) structure of the murine cytomegalovirus (MCMV) capsid at a 9.1 ? resolution and describe the molecular interactions among the ~3000 protein molecules in the CMV capsid at the secondary structure level. Secondary structural elements are resolved to provide landmarks for correlating with results from sequence-based prediction and for structure-based homology modeling. The major capsid protein (MCP) upper domain (MCPud) contains α-helices and β-sheets conserved with those in MCPud of herpes simplex virus type 1 (HSV-1), with the largest differences identified as a “saddle loop” region, located at the tip of MCPud and involved in interaction with the smallest capsid protein (SCP). Interactions among the bacteriophage HK97-like floor domain of MCP, the middle domain of MCP, the hook and clamp domains of the triplex proteins (hoop and clamp domains of TRI-1 and clamp domain of TRI-2) contribute to the formation of a mature capsid. These results offer a framework for understanding how cytomegalovirus uses various secondary structural elements of its capsid proteins to build a robust capsid for packaging its large dsDNA genome inside and for attaching unique functional tegument proteins outside.  相似文献   

7.
Cryo-electron microscopy and image reconstruction were used to determine the three-dimensional structure of Infectious flacherie virus (IFV). 5047 particles were selected for the final reconstruction. The FSC curve showed that the resolution of this capsid structure was 18 Å. The structure is a psuedo T=3 (P=3) icosahedral capsid with a diameter of 302.4 Å and a single shell thickness of 15 Å. The density map showed that IFV has a smooth surface without any prominent protrude or depression. Comparison of the IFV structure with those of the insect picorna-like virus-Cricket paralysis virus (CrPV)and human picornavirus-Human rhinovirus 14 (HRV 14) revealed that the IFV structure resembles the CrPV structure. The “Rossmann canyon” is absent in both IFV and CrPV particles. The polypeptide topology of IFV VP2, IFV VP3 was predicted and the subunit location at the capsid surface was further analyzed.  相似文献   

8.
Type IV pili are bacterial extracellular filaments that can be retracted to create force and motility. Retraction is accomplished by the motor protein PilT. Crystal structures of Pseudomonas aeruginosa PilT with and without bound β,γ-methyleneadenosine-5′-triphosphate have been solved at 2.6 Å and 3.1 Å resolution, respectively, revealing an interlocking hexamer formed by the action of a crystallographic 2-fold symmetry operator on three subunits in the asymmetric unit and held together by extensive ionic interactions. The roles of two invariant carboxylates, Asp Box motif Glu163 and Walker B motif Glu204, have been assigned to Mg2+ binding and catalysis, respectively. The nucleotide ligands in each of the subunits in the asymmetric unit of the β,γ-methyleneadenosine-5′-triphosphate-bound PilT are not equally well ordered. Similarly, the three subunits in the asymmetric unit of both structures exhibit differing relative conformations of the two domains. The 12° and 20° domain rotations indicate motions that occur during the ATP-coupled mechanism of the disassembly of pili into membrane-localized pilin monomers. Integrating these observations, we propose a three-state “Ready, Active, Release” model for the action of PilT.  相似文献   

9.
Mimivirus is the largest known virus whose genome and physical size are comparable to some small bacteria, blurring the boundary between a virus and a cell. Structural studies of Mimivirus have been difficult because of its size and long surface fibers. Here we report the use of enzymatic digestions to remove the surface fibers of Mimivirus in order to expose the surface of the viral capsid. Cryo-electron microscopy (cryoEM) and atomic force microscopy were able to show that the 20 icosahedral faces of Mimivirus capsids have hexagonal arrays of depressions. Each depression is surrounded by six trimeric capsomers that are similar in structure to those in many other large, icosahedral double-stranded DNA viruses. Whereas in most viruses these capsomers are hexagonally close-packed with the same orientation in each face, in Mimivirus there are vacancies at the systematic depressions with neighboring capsomers differing in orientation by 60°. The previously observed starfish-shaped feature is well-resolved and found to be on each virus particle and is associated with a special pentameric vertex. The arms of the starfish fit into the gaps between the five faces surrounding the unique vertex, acting as a seal. Furthermore, the enveloped nucleocapsid is accurately positioned and oriented within the capsid with a concave surface facing the unique vertex. Thus, the starfish-shaped feature and the organization of the nucleocapsid might regulate the delivery of the genome to the host. The structure of Mimivirus, as well as the various fiber components observed in the virus, suggests that the Mimivirus genome includes genes derived from both eukaryotic and prokaryotic organisms. The three-dimensional cryoEM reconstruction reported here is of a virus with a volume that is one order of magnitude larger than any previously reported molecular assembly studied at a resolution of equal to or better than 65 Å.  相似文献   

10.
Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single “horn”, a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 Å resolution icosahedral reconstruction of the capsid revealed a T = 7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria.  相似文献   

11.
The projection structures of complex I and the I + III2 supercomplex from the C4 plant Zea mays were determined by electron microscopy and single particle image analysis to a resolution of up to 11 Å. Maize complex I has a typical L-shape. Additionally, it has a large hydrophilic extra-domain attached to the centre of the membrane arm on its matrix-exposed side, which previously was described for Arabidopsis and which was reported to include carbonic anhydrase subunits. A comparison with the X-ray structure of homotrimeric γ-carbonic anhydrase from the archaebacterium Methanosarcina thermophila indicates that this domain is also composed of a trimer. Mass spectrometry analyses allowed to identify two different carbonic anhydrase isoforms, suggesting that the γ-carbonic anhydrase domain of maize complex I most likely is a heterotrimer. Statistical analysis indicates that the maize complex I structure is heterogeneous: a less-abundant “type II” particle has a 15 Å shorter membrane arm and an additional small protrusion on the intermembrane-side of the membrane arm if compared to the more abundant “type I” particle. The I + III2 supercomplex was found to be a rigid structure which did not break down into subcomplexes at the interface between the hydrophilic and the hydrophobic arms of complex I. The complex I moiety of the supercomplex appears to be only of “type I”. This would mean that the “type II” particles are not involved in the supercomplex formation and, hence, could have a different physiological role.  相似文献   

12.
Phaeocystis pouchetii virus (PpV01) infects and lyses the haptophyte Phaeocystis pouchetii (Hariot) Lagerheim and was first isolated from Norwegian coastal waters. We have used electron cryomicroscopy and three-dimensional image reconstruction methods to examine the native morphology of PpV01 at a resolution of 3 nm. The icosahedral capsid of PpV01 has a maximum diameter of 220 nm and is composed of 2,192 capsomers arranged with T=219 quasisymmetry. One specific capsomer in each asymmetric unit contains a fiber-like protrusion. Density attributed to the presence of a lipid membrane appears just below (inside) the capsid. PpV01 is the largest icosahedral virus whose capsid structure has been determined in three dimensions from images of vitrified samples. Striking similarities in the structures of PpV01 and a number of other large double-stranded DNA viruses are consistent with a growing body of evidence that they share a common evolutionary origin.  相似文献   

13.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

14.
A three-dimensional reconstruction of Sindbis virus at 7.0 Å resolution presented here provides a detailed view of the virion structure and includes structural evidence for key interactions that occur between the capsid protein (CP) and transmembrane (TM) glycoproteins E1 and E2. Based on crystal structures of component proteins and homology modeling, we constructed a nearly complete, pseudo-atomic model of the virus. Notably, this includes identification of the 33-residue cytoplasmic domain of E2 (cdE2), which follows a path from the E2 TM helix to the CP where it enters and exits the CP hydrophobic pocket and then folds back to contact the viral membrane. Modeling analysis identified three major contact regions between cdE2 and CP, and the roles of specific residues were probed by molecular genetics. This identified R393 and E395 of cdE2 and Y162 and K252 of CP as critical for virus assembly. The N-termini of the CPs form a contiguous network that interconnects 12 pentameric and 30 hexameric CP capsomers. A single glycoprotein spike cross-links three neighboring CP capsomers as might occur during initiation of virus budding.  相似文献   

15.
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. “Decoration” proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to ∼ 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage λ as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage λ capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to “idle” at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-γS only partially stabilizes the nucleocapsid, and a DNA is released in “quantized” steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.  相似文献   

16.
Understanding protein solubility, and consequently aggregation, is an important issue both from an academic and a biotechnological application viewpoints. Here we report the effects of 10 representative amino acids on the aggregation kinetics of proteins. The effects were determined by measuring the solubility of a simplified bovine pancreatic trypsin inhibitor (BPTI) variant, to which short artificial tags containing the amino acid of interest were added at its C-terminus. We determined the solubility of the tagged variants as a function of equilibration time (20 min to 48 h) and total protein concentration ranging from 0.10 mg/ml to 25.0 mg/ml. We observed, as anticipated, that proteins precipitated when the total protein concentration exceeded a critical value. However, when the total protein concentration was further increased, the apparent solubility reached a concentration above the critical value, and slowly decreased to a value under the critical concentration upon increasing the equilibration period. We rationalized these observations by identifying three different solubility values, the “transient solubility (TS)”, the “aggregation initiation concentration (AIC)” and the “long-term solubility (LS)”. AIC and LS are parameters determined essentially by the amino acid types composing the tags and could be considered as an amino acid's intrinsic property. On the other hand, TS is an apparent solubility that is measured after some (20 min in our case) equilibration time and is often considered as the “solubility” of the protein. Similar aggregation kinetic patterns were observed with natural proteins, indicating the generality of the observations made using our model protein.  相似文献   

17.
Genome-binding proteins with scaffolding and/or regulatory functions are common in living organisms and include histones in eukaryotic cells, histone-like proteins in some double-stranded DNA (dsDNA) viruses, and the nucleocapsid proteins of single-stranded RNA viruses. dsRNA viruses nevertheless lack these ribonucleoprotein (RNP) complexes and are characterized by sharing an icosahedral T = 2 core involved in the metabolism and insulation of the dsRNA genome. The birnaviruses, with a bipartite dsRNA genome, constitute a well-established exception and have a single-shelled T = 13 capsid only. Moreover, as in many negative single-stranded RNA viruses, the genomic dsRNA is bound to a nucleocapsid protein (VP3) and the RNA-dependent RNA polymerase (VPg). We used electron microscopy and functional analysis to characterize these RNP complexes of infectious bursal disease virus, the best characterized member of the Birnaviridae family. Mild disruption of viral particles revealed that VP3, the most abundant core protein, present at ∼ 450 copies per virion, is found in filamentous material tightly associated with the dsRNA. We developed a method to purify RNP and VPg-dsRNA complexes. Analysis of these complexes showed that they are linear molecules containing a constant amount of protein. Sensitivity assays to nucleases indicated that VP3 renders the genomic dsRNA less accessible for RNase III without introducing genome compaction. Additionally, we found that these RNP complexes are functionally competent for RNA synthesis in a capsid-independent manner, in contrast to most dsRNA viruses.  相似文献   

18.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

19.
The emergence of resistance to vancomycin and related glycopeptide antibiotics is spurring efforts to develop new antimicrobial therapeutics. High-resolution structural information about antibiotic-ligand recognition should prove valuable in the rational design of improved drugs. We have determined the X-ray crystal structure of the complex of vancomycin with N-acetyl-d-Ala-d-Ala, a mimic of the natural muramyl peptide target, and refined this structure at a resolution of 1.3 Å to R and Rfree values of 0.172 and 0.195, respectively. The crystal asymmetric unit contains three back-back vancomycin dimers; two of these dimers participate in ligand-mediated face-face interactions that produce an infinite chain of molecules running throughout the crystal. The third dimer packs against the side of a face-face interface in a tight “side-side” interaction that involves both polar contacts and burial of hydrophobic surface. The trimer of dimers found in the asymmetric unit is essentially identical to complexes seen in three other crystal structures of glycopeptide antibiotics complexed with peptide ligands. These four structures are derived from crystals belonging to different space groups, suggesting that the trimer of dimers may not be simply a crystal packing artifact and prompting us to ask if ligand-mediated oligomerization could be observed in solution. Using size-exclusion chromatography, dynamic light scattering, and small-angle X-ray scattering, we demonstrate that vancomycin forms discrete supramolecular complexes in the presence of tripeptide ligands. Size estimates for these complexes are consistent with assemblies containing four to six vancomycin monomers.  相似文献   

20.
The dreaded pathogen Staphylococcus aureus is one of the causes of morbidity and mortality worldwide. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), one of the key glycolytic enzymes, is irreversibly oxidized under oxidative stress and is responsible for sustenance of the pathogen inside the host. With an aim to elucidate the catalytic mechanism and identification of intermediates involved, we describe in this study different crystal structures of GAPDH1 from methicillin-resistant S. aureus MRSA252 (SaGAPDH1) in apo and holo forms of wild type, thioacyl intermediate, and ternary complexes of active-site mutants with physiological substrate d-glyceraldehyde-3-phosphate (G3P) and coenzyme NAD+. A new phosphate recognition site, “new Pi” site, similar to that observed in GAPDH from Thermotoga maritima, is reported here, which is 3.40 Å away from the “classical Pi” site. Ternary complexes discussed are representatives of noncovalent Michaelis complexes in the ground state. d-G3P is bound to all the four subunits of C151S.NAD and C151G.NAD in more reactive hydrate (gem-di-ol) form. However, in C151S + H178N.NAD, the substrate is bound to two chains in aldehyde form and in gem-di-ol form to the other two. This work reports binding of d-G3P to the C151G mutant in an inverted manner for the very first time. The structure of the thiaocyl complex presented here is formed after the hydride transfer. The C3 phosphate of d-G3P is positioned at the “Ps” site in the ternary complexes but at the “new Pi” site in the thioacyl complex and C1-O1 bond points opposite to His178 disrupting the alignment between itself and NE2 of His178. A new conformation (Conformation I) of the 209-215 loop has also been identified, where the interaction between phosphate ion at the “new Pi” site and conserved Gly212 is lost. Altogether, inferences drawn from the kinetic analyses and crystal structures suggest the “flip-flop” model proposed for the enzyme mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号