首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Point mutations in proteins can have different effects on protein stability depending on the mechanism of unfolding. In the most interesting case of I27, the Ig‐like module of the muscle protein titin, one point mutation (Y9P) yields opposite effects on protein stability during denaturant‐induced “global unfolding” versus “vectorial unfolding” by mechanical pulling force or cellular unfolding systems. Here, we assessed the reason for the different effects of the Y9P mutation of I27 on the overall molecular stability and N‐terminal unraveling by NMR. We found that the Y9P mutation causes a conformational change that is transmitted through β‐sheet structures to reach the central hydrophobic core in the interior and alters its accessibility to bulk solvent, which leads to destabilization of the hydrophobic core. On the other hand, the Y9P mutation causes a bend in the backbone structure, which leads to the formation of a more stable N‐terminal structure probably through enhanced hydrophobic interactions.  相似文献   

2.
It is generally assumed that preprotein substrates must be presented in an unfolded state to the bacterial Sec-translocase in order to be translocated. Here, we have examined the ability of the Sec-translocase to translocate folded preproteins. Tightly folded human cardiac Ig-like domain I27 fused to the C terminus of proOmpA is translocated efficiently by the Sec-translocase and the translocation kinetics are determined by the extent of folding of the titin I27 domain. Accumulation of specific translocation intermediates around the fusion point that undergo translocation progress upon ATP binding suggests that the motor protein SecA plays an important and decisive role in promoting unfolding of the titin I27 domain. It is concluded that the bacterial Sec-translocase is capable of actively unfolding preproteins.  相似文献   

3.
Unfolding is an essential process during translocation of preproteins into mitochondria; however, controversy exists as to whether mitochondria play an active role in unfolding. We have established an in vitro system with a kinetic saturation of the mitochondrial import machinery, yielding translocation rates comparable to in vivo import rates. Preproteins with short N-terminal segments in front of a folded domain show a characteristic delay of the onset of translocation (lag phase) although the maximal import rate is similar to that of longer preproteins. The lag phase is shortened by extending the N-terminal segment to improve the accessibility to matrix heat shock protein 70 and abolished by unfolding of the preprotein. A mutant mtHsp70 defective in binding to the inner membrane prolongs the lag phase and reduces the translocation activity. A direct comparison of the rate of spontaneous unfolding in solution with that during translocation demonstrates that unfolding by mitochondria is significantly faster, proving an active unfolding process. We conclude that access of mtHsp70 to N-terminal preprotein segments is critical for active unfolding and initiation of translocation.  相似文献   

4.
Steered molecular dynamics studies of titin I1 domain unfolding   总被引:3,自引:0,他引:3       下载免费PDF全文
The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band modules have been restricted to I27, the only structurally known Ig domain from the distal region of the titin I-band. In this paper we report SMD simulations unfolding I1, the first structurally available Ig domain from the proximal region of the titin I-band. The simulations are carried out with a view toward upcoming atomic force microscopy experiments. Both constant velocity and constant force stretching have been employed to model mechanical unfolding of oxidized I1, which has a disulfide bond bridging beta-strands C and E, as well as reduced I1, in which the disulfide bridge is absent. The simulations reveal that I1 is protected against external stress mainly through six interstrand hydrogen bonds between its A and B beta-strands. The disulfide bond enhances the mechanical stability of oxidized I1 domains by restricting the rupture of backbone hydrogen bonds between the A'- and G-strands. The disulfide bond also limits the maximum extension of I1 to approximately 220 A. Comparison of the unfolding pathways of I1 and I27 are provided and implications to AFM experiments are discussed.  相似文献   

5.
The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the characteristic beta-sandwich structure of all titin Ig domains, the crystal structure of I1 showed an internal disulfide bridge that was proposed to modulate its mechanical extensibility in vivo. Here, we use single molecule force spectroscopy and protein engineering to examine the mechanical architecture of this domain. In contrast to the predictions made from the X-ray crystal structure, we find that the formation of a disulfide bridge in I1 is a relatively rare event in solution, even under oxidative conditions. Furthermore, our studies of the mechanical stability of I1 modules engineered with point mutations reveal significant differences between the mechanical unfolding of the I1 and I27 modules. Our study illustrates the varying mechanical architectures of the titin Ig modules.  相似文献   

6.
Firefly luciferase is a protein with a large N-terminal and a small C-terminal domain. B-factor analysis shows that its C-terminal is much more flexible than its N-terminal. Studies on hyperthermophile proteins have been shown that the increased thermal stability of hyperthermophile proteins is due to their enhanced conformational rigidity and the relationship between flexibility, stability and function in most of proteins is on debate. Two mutations (D474K and D476N) in the most flexible region of firefly luciferase were designed. Thermostability analysis shows that D476N mutation doesn't have any significant effect but D474K mutation destabilized protein. On the other hand, flexibility analysis using dynamic quenching and limited proteolysis demonstrates that D474K mutation became much more flexible than wild type although D476N doesn't have any significant difference. Intrinsic and ANS fluorescence studies demonstrate that D476N mutation is brought about by structural changes without significant effect on thermostability and flexibility. Molecular modeling reveals that disruption of a salt bridge between D474 and K445 accompanying with some H-bond deletion may be involved in destabilization of D474K mutant.  相似文献   

7.
Folding reaction of goat alpha-lactalbumin has been studied by stopped-flow circular dichroism and molecular dynamics simulations. The effects of four single mutations and a double mutation on the stability of the protein under a native condition were studied. The mutations were introduced into residues located at a hydrophobic core in the alpha-domain of the molecule. Here we show that an amino acid substitution (T29I) increases the native-state stability of goat alpha-lactalbumin against the guanidine hydrochloride-induced unfolding by 3.5 kcal/mol. Kinetic refolding and unfolding of wild-type and mutant goat alpha-lactalbumin measured by stopped-flow circular dichroism showed that the local structure around the Thr29 side chain was not constructed in the transition state of the folding reaction. To characterize the local structural change around the Thr29 side chain to an atomic level of resolution, we performed high-temperature (at 400 K and 600 K) molecular dynamics simulations and studied the structural change at an initial stage of unfolding observed in the simulation trajectories. The Thr29 portion of the molecule experienced structural disruption accompanied with the loss of inter-residue contacts and with the water molecule penetration in the 400-K simulation as well as in four of the six 600-K simulations. Disruption of the N-terminal portion was also observed and was consistent with the results of kinetic refolding/unfolding experiments shown in our previous report.  相似文献   

8.
Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ~5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.  相似文献   

9.
A disease state mutation unfolds the parkin ubiquitin-like domain   总被引:1,自引:0,他引:1  
Safadi SS  Shaw GS 《Biochemistry》2007,46(49):14162-14169
E3 ubiquitin ligases are essential enzymes in the ubiquitination pathway responsible for the recognition of specific E2 conjugating enzymes and for transferring ubiquitin to a substrate targeted for degradation. In autosomal recessive juvenile Parkinson's disease, an early onset form of Parkinson's disease, point mutations in the E3 ligase parkin are one of the most commonly observed traits. Parkin is a multidomain E3 ligase that contains an N-terminal ubiquitin-like domain that interacts with, and effects the ubiquitination of, substrates such as cyclin E, p38 and synphilin. In this work we have examined the folding and structure of the parkin ubiquitin-like domain (Ubld) and of the protein with two causative disease mutations (K48A and R42P). Parallel experiments with the protein ubiquitin were done in order to determine if the same mutations were detrimental to the ubiquitin structure and stability. Despite similar folds between the parkin Ubld and ubiquitin, urea unfolding experiments show that the parkin Ubld is surprisingly approximately 10.6 kJ/mol less stable than ubiquitin. The K48A mutation had little effect on the stability of the parkin Ubld or ubiquitin indicating that this mutation contributes to defective protein-protein interactions. In contrast, the single point mutation R42P in parkin's Ubld caused poor expression and degradation of the protein. To avoid these problems, a GB1-Ubld fusion protein was characterized by NMR spectroscopy to show that the R42P mutation causes the complete unfolding of the parkin Ubld. This observation provides a rationale for the more rapid degradation of parkin carrying the R42P mutation in vivo, and its inability to interact with some substrate proteins. Our work provides the first structural and folding insight into the effects of causative mutations within the ubiquitin-like domain in autosomal recessive juvenile Parkinson's disease.  相似文献   

10.
Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. γS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse γS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, significant increases in hydrogen/deuterium exchange rates were observed by NMR for all the well-protected β-sheet core residues throughout the entire N-terminal domain of the mutant protein, resulting in up to a 3.5-kcal/mol reduction in the free energy of the folding/unfolding equilibrium. No difference was detected for the C-terminal domain. At a higher temperature, this effect further increases to allow for a much more uniform exchange rate among the N-terminal core residues and those of the least well-structured surface loops. This suggests a concerted unfolding intermediate of the N-terminal domain, while the C-terminal domain stays intact. Increasing concentrations of guanidinium chloride produced two transitions for the Opj mutant, with an unfolding intermediate at ∼ 1 M guanidinium chloride. The consequence of this partial unfolding, whether by elevated temperature or by denaturant, is the formation of thioflavin T staining aggregates, which demonstrated fibril-like morphology by atomic force microscopy. Seeding with the already unfolded protein enhanced the formation of fibrils. The Opj mutant protein provides a model for stress-related unfolding of an essentially normally folded protein and production of aggregates with some of the characteristics of amyloid fibrils.  相似文献   

11.
With vital yeast cells, a hybrid protein consisting of the amino-terminal third of the precursor to cytochrome b2 and of the entire dihydrofolate reductase was arrested on the import pathway into mitochondria. Accumulation of the protein in the mitochondrial membranes was achieved by inducing a stable tertiary structure of the dihydrofolate reductase domain. Thereby, three salient features of mitochondrial protein uptake in vivo were demonstrated: its posttranslational character; the requirement for unfolding of precursors; and import through translocation contact sites. The permanent occupation of translocation sites by the fusion protein inhibited the import of other precursors; it did, however, not lead to leakage of mitochondrial ions, implying the existence of a channel that is sealed around the membrane spanning polypeptide segment.  相似文献   

12.
Conversion of native proteins into amyloid fibrils is irreversible and therefore it is difficult to study the interdependence of conformational stability and fibrillation by thermodynamic analyses. Here we approached this problem by fusing amyloidogenic poly-alanine segments derived from the N-terminal domain of the nuclear poly (A) binding protein PABPN1 with a well studied, reversibly unfolding protein, CspB from Bacillus subtilis. Earlier studies had indicated that CspB could maintain its folded structure in fibrils, when it was separated from the amyloidogenic segment by a long linker. When CspB is directly fused with the amyloidogenic segment, it unfolds because its N-terminal chain region becomes integrated into the fibrillar core, as shown by protease mapping experiments. Spacers of either 3 or 16 residues between CspB and the amyloidogenic segment were not sufficient to prevent this loss of CspB structure. Since the low thermodynamic stability of CspB (ΔG D = 12.4 kJ/mol) might be responsible for unfolding and integration of CspB into fibrils, fusions with a CspB mutant with enhanced thermodynamic stability (ΔG D = 26.9 kJ/mol) were studied. This strongly stabilized CspB remained folded and prevented fibril formation in all fusions. Our data show that the conformational stability of a linked, independently structured protein domain can control fibril formation.  相似文献   

13.
14.
Hydrophobic membrane proteins are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, mediated by hydrophobic signal sequence. Mitochondrial membrane proteins escape this mechanism despite their hydrophobic character. We examined sorting of membrane proteins into the mitochondria, by using mitochondrial ATP-binding cassette (ABC) transporter isoform (ABC-me). In the absence of 135-residue N-terminal hydrophilic segment (N135), the membrane domain was integrated into the ER membrane in COS7 cells. Other sequences that were sufficient to import soluble protein into mitochondria could not import the membrane domain. N135 imports other membrane proteins into mitochondria. N135 prevents cotranslational targeting of the membrane domain to ER and in turn achieves posttranslational import into mitochondria. In a cell-free system, N135 suppresses targeting to the ER membranes, although it does not affect recognition of hydrophobic segments by signal recognition particle. We conclude that the N135 segment blocks the ER targeting of membrane proteins even in the absence of mitochondria and switches the sorting mode from cotranslational ER integration to posttranslational mitochondrial import.  相似文献   

15.
Protein engineering Phi-value analysis combined with single molecule atomic force microscopy (AFM) was used to probe the molecular basis for the mechanical stability of TNfn3, the third fibronectin type III domain from human tenascin. This approach has been adopted previously to solve the forced unfolding pathway of a titin immunoglobulin domain, TI I27. TNfn3 and TI I27 are members of different protein superfamilies and have no sequence identity but they have the same beta-sandwich structure consisting of two antiparallel beta-sheets. TNfn3, however, unfolds at significantly lower forces than TI I27. We compare the response of these proteins to mechanical force. Mutational analysis shows that, as is the case with TI I27, TNfn3 unfolds via a force-stabilised intermediate. The key event in forced unfolding in TI I27 is largely the breaking of hydrogen bonds and hydrophobic interactions between the A' and G-strands. The mechanical Phi-value analysis and molecular dynamics simulations reported here reveal that significantly more of the TNfn3 molecule contributes to its resistance to force. Both AFM experimental data and molecular dynamics simulations suggest that the rate-limiting step of TNfn3 forced unfolding reflects a transition from the extended early intermediate to an aligned intermediate state. As well as losses of interactions of the A and G-strands and associated loops there are rearrangements throughout the core. As was the case for TI I27, the forced unfolding pathway of TNfn3 is different from that observed in denaturant studies in the absence of force.  相似文献   

16.
BACKGROUND: Do proteins that have the same structure fold by the same pathway even when they are unrelated in sequence? To address this question, we are comparing the folding of a number of different immunoglobulin-like proteins. Here, we present a detailed protein engineering phi value analysis of the folding pathway of TI I27, an immunoglobulin domain from human cardiac titin. RESULTS: TI I27 folds rapidly via a kinetic intermediate that is destabilized by most mutations. The transition state for folding is remarkably native-like in terms of solvent accessibility. We use phi value analysis to map this transition state and show that it is highly structured; only a few residues close to the N-terminal region of the protein remain completely unfolded. Interestingly, most mutations cause the transition state to become less native-like. This anti-Hammond behavior can be used as a novel means of obtaining additional structural information about the transition state. CONCLUSIONS: The residues that are involved in nucleating the folding of TI I27 are structurally equivalent to the residues that form the folding nucleus in an evolutionary unrelated fibronectin type III protein. These residues form part of the common structural core of Ig-like domains. The data support the hypothesis that interactions essential for defining the structure of these beta sandwich proteins are also important in nucleation of folding.  相似文献   

17.
Mutations in genes for sarcomeric proteins such as titin/connectin are known to cause dilated cardiomyopathy (DCM). However, disease-causing mutations can be identified only in a small proportion of the patients even in the familial cases, suggesting that there remains yet unidentified disease-causing gene(s) for DCM. To explore the novel disease gene for DCM, we examined CRYAB encoding alphaB-crystallin for mutation in the patients with DCM, since alphaB-crystallin was recently reported to associate with the heart-specific N2B domain and adjacent I26/I27 domain of titin/connectin, and we previously reported a N2B mutation, Gln4053ter, in DCM. A missense mutation of CRYAB, Arg157His, was found in a familial DCM patient and the mutation affected the evolutionary conserved amino acid residue among alpha-crystallins. Functional analysis revealed that the mutation decreased the binding to titin/connectin heart-specific N2B domain without affecting distribution of the mutant crystallin protein in cardiomyocytes. In contrast, another CRYAB mutation, Arg120Gly, reported in desmin-related myopathy decreased the binding to both N2B and striated muscle-specific I26/27 domains and showed intracellular aggregates of the mutant protein. These observations suggest that the Arg157His mutation may be involved in the pathogenesis of DCM via impaired accommodation to the heart-specific N2B domain of titin/connectin and its disease-causing mechanism is different from the mutation found in desmin-related myopathy.  相似文献   

18.
Firefly luciferase is a protein with a large N-terminal and a small C-terminal domain. B-factor analysis shows that its C-terminal is much more flexible than its N-terminal. Studies on hyperthermophile proteins have been shown that the increased thermal stability of hyperthermophile proteins is due to their enhanced conformational rigidity and the relationship between flexibility, stability and function in most of proteins is on debate. Two mutations (D474K and D476N) in the most flexible region of firefly luciferase were designed. Thermostability analysis shows that D476N mutation doesn't have any significant effect but D474K mutation destabilized protein. On the other hand, flexibility analysis using dynamic quenching and limited proteolysis demonstrates that D474K mutation became much more flexible than wild type although D476N doesn't have any significant difference. Intrinsic and ANS fluorescence studies demonstrate that D476N mutation is brought about by structural changes without significant effect on thermostability and flexibility. Molecular modeling reveals that disruption of a salt bridge between D(474) and K(445) accompanying with some H-bond deletion may be involved in destabilization of D474K mutant.  相似文献   

19.
Tim14 and Tim16 are essential components of the import motor of the mitochondrial TIM23 preprotein translocase. Tim14 contains a J domain in the matrix space that is anchored in the inner membrane by a transmembrane segment. Tim16 is a J-related protein with a moderately hydrophobic segment at its N terminus. The J and J-like domains function in the regulation of the ATPase activity of the Hsp70 chaperone of the import motor. We report here on the role of the hydrophobic segments of Tim16 and Tim14 in the TIM23 translocase. Yeast cells lacking the hydrophobic N-terminal segment in either Tim16 or Tim14 are viable but show growth defects and decreased import rates of matrix-targeted preproteins into mitochondria. The interaction of the Tim14.Tim16 complex with the core complex of the TIM23 translocase is destabilized in these cells. In particular, the N-terminal domain of Tim16 is crucial for the interaction of the Tim14.Tim16 complex with the TIM23 preprotein translocase. Deletion of hydrophobic segments in both, Tim16 and Tim14, is lethal. We conclude that import into the matrix space of mitochondria requires association of the co-chaperones Tim16 and Tim14 with the TIM23 preprotein translocase.  相似文献   

20.
Most of the organellar amino acyl-tRNA synthetases (aaRSs) are dually targeted to both mitochondria and chloroplasts using dual targeting peptides (dTPs). We have investigated the targeting properties and domain structure of dTPs of seven aaRSs by studying the in vitro and in vivo import of N-terminal deleted constructs of dTPs fused to green fluorescent protein. The deletion constructs were designed based on prediction programs, TargetP and Predotar, as well as LogoPlots derived from organellar proteomes in Arabidopsis thaliana. In vitro import was performed either into a single isolated organelle or as dual import (i.e., into a mixture of isolated mitochondria and chloroplasts followed by reisolation of the organelles). In vivo import was investigated as transient expression of the green fluorescent protein constructs in Nicotiana benthamiana protoplasts. Characterization of recognition determinants showed that the N-terminal portions of TyrRS-, ValRS- and ThrRS-dTPs (27, 22 and 23 amino acids, respectively) are required for targeting into both mitochondria and chloroplasts. Surprisingly, these N-terminal portions contain no or very few arginines (or lysines) but very high number of hydroxylated residues (26-51%). For two aaRSs, a domain structure of the dTP became evident. Removal of 20 residues from the dTP of ProRS abolished chloroplastic import, indicating that the N-terminal region was required for chloroplast targeting, whereas deletion of 16 N-terminal amino acids from AspRS-dTP inhibited the mitochondrial import, showing that in this case, the N-terminal portion was required for the mitochondrial import. Finally, deletion of N-terminal regions of dTPs for IleRS and LysRS did not affect dual targeting. In summary, it can be concluded that there is no general rule for how the determinants for dual targeting are distributed within dTPs; in most cases, the N-terminal portion is essential for import into both organelles, but in a few cases, a domain structure was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号