首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial pili are involved in a host of activities, including motility, adhesion, transformation, and immune escape. Structural studies of these pili have shown that several distinctly different classes exist, with no common origin. Remarkably, it is now known that the archaeal flagellar filament appears to have a common origin with the bacterial type IV pilus, and assembly in both systems involves hydrophobic N-terminal α-helices that form three-stranded coils in the center of these filaments. Recent work has identified further genes in archaea as being similar to bacterial type IV pilins, but the function or structures formed by such gene products was unknown. Using electron cryo-microscopy, we show that an archaeal pilus from Methanococcus maripaludis has a structure entirely different from that of any of the known bacterial pili. Two subunit packing arrangements were identified: one has rings of four subunits spaced by ∼ 44 Å and the other has a one-start helical symmetry with ∼ 2.6 subunits per turn of a ∼ 30 Å pitch helix. Remarkably, these schemes appear to coexist within the same filaments. For the segments composed of rings, the twist between adjacent rings is quite variable, while for the segments having a one-start helix there is a large variability in both the axial rise and the twist per subunit. Since this pilus appears to be assembled from a type IV pilin-like protein with a hydrophobic N-terminal helix, it provides yet another example of how different quaternary structures can be formed from similar building blocks. This result has many implications for understanding the evolutionary divergence of bacteria and archaea.  相似文献   

2.
The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for proteins imported into mitochondria. We determined the structure of the native, unstained ∼ 550-kDa core-Tom20 complex from Saccharomycescerevisiae by cryo-electron microscopy at 18-Å resolution. The complex is triangular, measuring 145 Å on edge, and has near-3-fold symmetry. Its bulk is made up of three globular ∼ 50-Å domains. Three elliptical pores on the c-face merge into one central ∼ 70-Å cavity with a cage-like assembly on the opposite t-face. Nitrilotriacetic acid-gold labeling indicates that three Tom22 subunits in the TOM complex are located at the perimeter of the complex near the interface of the globular domains. We assign Tom22, which controls complex assembly, to three peripheral protrusions on the c-face, while the Tom20 subunit is tentatively assigned to the central protrusion on this surface. Based on our three-dimensional map, we propose a model of transient interactions and functional dynamics of the TOM assembly.  相似文献   

3.
The tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼ 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼ 10− 4 of packaged DNA in all particles) and are initially detected by nondenaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T = 7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼ 15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (< 28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) form a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings such as those seen in other tailed dsDNA bacteriophages. The distance between the icosahedral shell and the outermost DNA ring decreases in the mature, fully packaged phage structure. These results suggest that, in the early stage of DNA packaging, the dsDNA genome is randomly distributed inside the capsid, not preferentially packaged against the inner surface of the capsid shell, and that the multiple concentric dsDNA rings seen later are the results of pressure-driven close-packing.  相似文献   

4.
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is ∼ 250 Å, with ∼ 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing ∼ 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.  相似文献   

5.
Archaea, constituting a third domain of life between Eubacteria and Eukarya, characteristically inhabit extreme environments. They swim by rotating flagellar filaments that are phenomenologically and functionally similar to those of eubacteria. However, biochemical, genetic and structural evidence has pointed to significant differences but even greater similarity to eubacterial type IV pili. Here we determined the three-dimensional symmetry and structure of the flagellar filament of the acidothermophilic archaeabacterium Sulfolobus shibatae B12 using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Processing of the cryo-negatively stained filaments included analysis of their helical symmetry and subsequent single particle reconstruction. Two filament subunit packing arrangements were identified: one has helical symmetry, similar to that of the extreme halophile Halobacterium salinarum, with ten subunits per 5.3 nm repeat and the other has helically arranged stacked disks with C3 symmetry and 12 subunits per repeat. The two structures are related by a slight twist. The S. shibatae filament has a larger diameter compared to that of H. salinarum, at the opposite end of the archaeabacterial phylogenetic spectrum, but the basic three-start symmetry and the size and arrangement of the core domain are conserved and the filament lacks a central channel. This similarity suggests a unique and common underlying symmetry for archaeabacterial flagellar filaments.  相似文献   

6.
Morphogenesis of bacteriophage P22 involves the packaging of double-stranded DNA into a preassembled procapsid. DNA is translocated by a powerful virally encoded molecular motor called terminase, which comprises large (gp2, 499 residues) and small (gp3, 162 residues) subunits. While gp2 contains the phosphohydrolase and endonuclease activities of terminase, the function of gp3 may be to regulate specific and nonspecific modes of DNA recognition as well as the enzymatic activities of gp2. Electron microscopy shows that wild-type gp3 self-assembles into a stable and monodisperse nonameric ring. A three-dimensional reconstruction at 18 Å resolution provides the first glimpse of P22 terminase architecture and implies two distinct modes of interaction with DNA—involving a central channel of 20 Å diameter and radial spikes separated by 34 Å. Electromobility shift assays indicate that the gp3 ring binds double-stranded DNA nonspecifically in vitro via electrostatic interactions between the positively charged C-terminus of gp3 (residues 143-152) and phosphates of the DNA backbone. Raman spectra show that nonameric rings formed by subunits truncated at residue 142 retain the subunit fold despite the loss of DNA-binding activity. Difference density maps between gp3 rings containing full-length and C-terminally truncated subunits are consistent with localization of residues 143-152 along the central channel of the nonameric ring. The results suggest a plausible molecular mechanism for gp3 function in DNA recognition and translocation.  相似文献   

7.
The type III secretion system (T3SS) is essential for the infectivity of many pathogenic Gram-negative bacteria. The T3SS contains proteins that form a channel in the inner and outer bacterial membranes, as well as an extracellular needle that is used for transporting and injecting effector proteins into a host cell. The homology between the T3SS and the bacterial flagellar system has been firmly established, based upon both sequence similarities between respective proteins in the two systems and the structural homology of higher-order assemblies. It has previously been shown that the Shigella flexneri needle has a helical symmetry of ∼ 5.6 subunits/turn, which is quite similar to that of the most intensively studied flagellar filament (from Salmonella typhimurium), which has ∼ 5.5 subunits/turn. We now show that the Sa. typhimurium needle, expected by homology arguments to be more similar to the Sa. typhimurium flagellar filament than is the needle from Shigella, actually has ∼ 6.3 subunits/turn. It is not currently understood how host cell contact, made at the tip of the needle, is communicated to the secretory system at the base. In contrast to the Sa. typhimurium flagellar filament, which shows a nearly crystalline order, the Sa. typhimurium needle has a highly variable symmetry, which could be used to transmit information about host cell contact.  相似文献   

8.
Endoglin is a type I membrane protein expressed as a disulphide-linked homodimer on human vascular endothelial cells whose haploinsufficiency is responsible for the dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia (HHT). Structurally, endoglin belongs to the zona pellucida (ZP) family of proteins that share a ZP domain of ∼ 260 amino acid residues at their extracellular region. Endoglin is a component of the TGF-β receptor complex, interacts with the TGF-β signalling receptors types I and II, and modulates cellular responses to TGF-β. Here, we have determined for the first time the three-dimensional structure of the ∼ 140 kDa extracellular domain of endoglin at 25 Å resolution, using single-particle electron microscopy (EM). This reconstruction provides the general architecture of endoglin, which arranges as a dome made of antiparallel oriented monomers enclosing a cavity at one end. A high-resolution structure of endoglin has also been modelled de novo and found to be consistent with the experimental reconstruction. Each subunit comprises three well-defined domains, two of them corresponding to ZP regions, organised into an open U-shaped monomer. This domain arrangement was found to closely resemble the overall structure derived experimentally and the three modelled de novo domains were tentatively assigned to the domains observed in the EM reconstruction. This molecular model was further tested by tagging endoglin's C terminus with an IgG Fc fragment visible after 3D reconstruction of the labelled protein. Combined, these data provide the structural framework to interpret endoglin's functional domains and mutations found in HHT patients.  相似文献   

9.
DNA polymerase δ (Polδ) is a multisubunit polymerase that plays an indispensable role in replication from yeast to humans. Polδ from Saccharomyces cerevisiae is composed of three subunits: Pol3, Pol31, and Pol32. Despite the elucidation of the structures and models of the individual subunits (or portions, thereof), the nature of their assembly remains unclear. We present here a small-angle X-ray scattering analysis of a yeast Polδ complex (PolδT) composed of Pol3, Pol31, and Pol32N (amino acids 1-103 of Pol32). From the small angle X-ray scattering global parameters and reconstructed envelopes, we show that PolδT adopts an elongated conformation with a radius of gyration (Rg) of ∼ 52 Å and a maximal dimension of ∼ 190 Å. We also propose an orientation for the accessory Pol31-Pol32N subunits relative to the Pol3 catalytic core that best agrees with the experimental scattering profile. The analysis also points to significant conformational variability that may allow Polδ to better coordinate its action with other proteins at the replication fork.  相似文献   

10.
The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently with the use of the yeast mutant actin L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked globular actin monomer does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin, to assist with actin nucleation, and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not individually, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin, the helical twist of filamentous actin (F-actin) changes by ∼ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin and a change of twist by ∼ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics in both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors.  相似文献   

11.
The rotavirus inner capsid particle, known as the “double-layered particle” (DLP), is the “payload” delivered into a cell in the process of viral infection. Its inner and outer protein layers, composed of viral protein (VP) 2 and VP6, respectively, package the 11 segments of the double-stranded RNA (dsRNA) of the viral genome, as well as about the same number of polymerase molecules (VP1) and capping-enzyme molecules (VP3). We have determined the crystal structure of the bovine rotavirus DLP. There is one full particle (outer diameter ∼ 700 Å) in the asymmetric unit of the P212121 unit cell of dimensions a = 740 Å, b = 1198 Å, and c = 1345 Å. A three-dimensional reconstruction from electron cryomicroscopy was used as a molecular replacement model for initial phase determination to about 18.5 Å resolution, and the 60-fold redundancy of icosahedral particle symmetry allowed phases to be extended stepwise to the limiting resolution of the data (3.8 Å). The structure of a VP6 trimer (determined previously by others) fits the outer layer density with very little adjustment. The T = 13 triangulation number of that layer implies that there are four and one-third VP6 trimers per icosahedral asymmetric unit. The inner layer has 120 copies of VP2 and thus 2 copies per icosahedral asymmetric unit, designated VP2A and VP2B. Residues 101-880 fold into a relatively thin principal domain, comma-like in outline, shaped such that only rather modest distortions (concentrated at two “subdomain” boundaries) allow VP2A and VP2B to form a uniform layer with essentially no gaps at the subunit boundaries, except for a modest pore along the 5-fold axis. The VP2 principal domain resembles those of the corresponding shells and homologous proteins in other dsRNA viruses: λ1 in orthoreoviruses and VP3 in orbiviruses. Residues 1-80 of VP2A and VP2B fold together with four other such pairs into a “5-fold hub” that projects into the DLP interior along the 5-fold axis; residues 81-100 link the 10 polypeptide chains emerging from a 5-fold hub to the N-termini of their corresponding principal domains, clustered into a decameric assembly unit. The 5-fold hub appears to have several distinct functions. One function is to recruit a copy of VP1 (or of a VP1-VP3 complex), potentially along with a segment of plus-strand RNA, as a decamer of VP2 assembles. The second function is to serve as a shaft around which can coil a segment of dsRNA. The third function is to guide nascent mRNA, synthesized in the DLP interior by VP1 and 5′-capped by the action of VP3, out through a 5-fold exit channel. We propose a model for rotavirus particle assembly, based on known requirements for virion formation, together with the structure of the DLP and that of VP1, determined earlier.  相似文献   

12.
Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single-stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double-stranded DNA with ∼ 6.4 subunits per turn and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy that the Dmc1 filament formed on single-stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or scanning transmission electron microscopy, to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated.  相似文献   

13.
Using cryo-electron microscopy, single particle image processing and three-dimensional reconstruction with icosahedral averaging, we have determined the three-dimensional solution structure of bacteriophage MS2 capsids reassembled from recombinant protein in the presence of short oligonucleotides. We have also significantly extended the resolution of the previously reported structure of the wild-type MS2 virion. The structures of recombinant MS2 capsids reveal clear density for bound RNA beneath the coat protein binding sites on the inner surface of the T = 3 MS2 capsid, and show that a short extension of the minimal assembly initiation sequence that promotes an increase in the efficiency of assembly, interacts with the protein capsid forming a network of bound RNA. The structure of the wild-type MS2 virion at ∼9 Å resolution reveals icosahedrally ordered density encompassing ∼90% of the single-stranded RNA genome. The genome in the wild-type virion is arranged as two concentric shells of density, connected along the 5-fold symmetry axes of the particle. This novel RNA fold provides new constraints for models of viral assembly.  相似文献   

14.
Oxygen transport in Myriapoda is maintained by a unique 6 × 6mer hemocyanin, that is, 36 subunits arranged as six hexamers (1 × 6mers). In the sluggish diplopod Spirostreptus, the 1 × 6mers seem to operate as almost or fully independent allosteric units (h ∼ 1.3; P50 ∼ 5 torr), whereas in the swift centipede Scutigera, they intensively cooperate allosterically (h ∼ 10; P50 ∼ 50 torr). Here, we show the chemomechanical basis of this differential behavior as deduced from hybrid 6 × 6mer structures, obtained by single-particle cryo-electron microscopy of the Scutigera 6 × 6mer (10.0 Å resolution according to the 0.5 criterion) and docking of homology-modeled subunits from Scutigera and two diplopods, Spirostreptus and Polydesmus. The Scutigera 6 × 6mer hemocyanin is a trigonal antiprism assembled from six smaller trigonal antiprisms (1 × 6mers), thereby exhibiting D3 point group symmetry. It can be described as two staggered 3 × 6mers or three oblique 2 × 6mers. Topologically, the 6 × 6mer is subdivided into six subunit zones, thereby exhibiting a mantle (24 subunits) and a core (12 subunits). The six hexamers are linked by 21 bridges, subdivided into five types: two within each 3 × 6mer and three between both 3 × 6mers. The molecular models of the 6 × 6mer reveal intriguing amino acid appositions at these inter-hexamer interfaces. Besides opportunities for salt bridges, we found pairs of carboxylate residues for possible bridging via a Ca2+ or Mg2+ ion. Moreover, we detected histidine clusters, notably in Scutigera, allowing us to advance hypotheses as to how the hexamers are allosterically coupled in centipede hemocyanin and why they act more independently in diplopod hemocyanin.  相似文献   

15.
16.
Dim2p is a eukaryal small ribosomal subunit RNA processing factor required for the maturation of 18S rRNA. Here we show that an archaeal homolog of Dim2p, aDim2p, forms a ternary complex with the archaeal homolog of eIF2α, a/eIF2α, and the RNA fragment that possesses the 3′ end sequence of 16S rRNA both in solution and in crystal. The 2.8-Å crystal structure of the ternary complex reveals that two KH domains of aDim2p, KH-1 and -2, are involved in binding the anti-Shine-Dalgarno core sequence (CCUCC-3′) and a highly conserved adjacent sequence (5′-GGAUCA), respectively, of the target rRNA fragment. The surface plasmon resonance results show that the interaction of aDim2p with the target rRNA fragment is very strong, with a dissociation constant of 9.8 × 10− 10 M, and that aDim2p has a strong nucleotide sequence preference for the 3′ end sequence of 16S rRNA. On the other hand, aDim2p interacts with the isolated α subunit and the intact αβγ complex of a/eIF2, irrespective of the RNA binding. These results suggest that aDim2p is a possible archaeal pre-rRNA processing factor recognizing the 3′ end sequence (5′-GAUCACCUCC-3′) of 16S rRNA and may have multiple biological roles in vivo by interacting with other proteins such as a/eIF2 and aRio2p.  相似文献   

17.
Adiponectin, a macromolecular complex similar to the members of the C1q and other collagenous homologues, elicits diverse biological functions, including anti-diabetes, anti-atherosclerosis, anti-inflammation and anti-tumor activities, which have been directly linked to the high molecular weight (HMW) oligomeric structures formed by multiples of adiponectin trimers. Here, we report the 3-D reconstructions of isolated full-length, recombinant murine C39A adiponectin trimer and hexamer of wild-type trimers (the major HMW form) determined by single-particle analysis of electron micrographs. The pleiomorphic ensemble of collagen-like stretches of the trimers leads to a dynamic structure of HMW that partition into two major classes, the fan-shaped (class I) and bouquet-shaped (class II). In both of these, while the N termini cluster into a compact ellipsoid-shaped (∼ 60 Å × 45 Å × 45 Å) volume, the collagenous domains assume a variety of arrangements. The domains are splayed by up to ∼ 90° in class I, can form a close-packed, up to ∼ 100 × 40 Å cylindrical assembly in class II, which can house about half of the 66 putative collagen-like sequence and the rest, tethered to the trimeric globular domains at the C terminus, are highly dynamic. As a result, the globular domains elaborate a variety of arrangements, covering an area of up to ∼ 4.9 × 105 Å2 and up to ∼ 320 Å apart, some of which were captured in reconstructions of class II. Our reconstructions suggest that the N-terminal structured domain, agreeing approximately with the expected volume for the octadecameric assembly of the terminal 27 amino acids, is crucial to the formation of the functionally active HMW. On the other hand, conformational flexibility of the trimers at the C terminus can allow the HMW to access and cluster disparate target ligands binding to the globular domains, which may be necessary to activate cellular signaling leading to the remarkable functional diversity of adiponectin.  相似文献   

18.
Hideyuki Adachi  Isao Enami  Nobuo Kamiya 《BBA》2009,1787(2):121-128
Crystal structure of photosystem II (PSII) has been reported from prokaryotic cyanobacteria but not from any eukaryotes. In the present study, we improved the purification procedure of PSII dimers from an acidophilic, thermophilic red alga Cyanidium caldarium, and crystallized them in two forms under different crystallization conditions. One had a space group of P2221 with unit cell constants of a = 146.8 Å, b = 176.9 Å, and c = 353.7 Å, and the other one had a space group of P212121 with unit cell constants of a = 209.2 Å, b = 237.5 Å, and c = 299.8 Å. The unit cell constants of both crystals and the space group of the first-type crystals are different from those of cyanobacterial crystals, which may reflect the structural differences between the red algal and cyanobacterial PSII, as the former contains a fourth extrinsic protein of 20 kDa. X-ray diffraction data were collected and processed to a 3.8 Å resolution with the first type crystal. For the second type crystal, a post-crystallization treatment of dehydration was employed to improve the resolution, resulting in a diffraction data of 3.5 Å resolution. Analysis of this type of crystal revealed that there are 2 PSII dimers in each asymmetric unit, giving rise to 16 PSII monomers in each unit cell, which contrasts to 4 dimers per unit cell in cyanobacterial crystals. The molecular packing of PSII within the unit cell was constructed with the molecular replacement method and compared with that of the cyanobacterial crystals.  相似文献   

19.
Structure of F-pili: reassessment of the symmetry   总被引:4,自引:0,他引:4  
Reassessment of the X-ray fibre diffraction patterns of F-pili using a more accurate subunit molecular weight suggests that subunits in F-pili are related by a fivefold rotation axis around the pilus axis. The identity of this fivefold symmetry with the fivefold rotation axis that relates the subunits in fd bacteriophage supports a simple model for tip-to-tip adsorption of bacteriophage to pili.  相似文献   

20.
The hepatitis B virus capsid (core antigen) is able to bind to and activate naïve B cells and these become efficient primary antigen-presenting cells for the priming of T cells. We have investigated this interaction by using cryo-electron microscopy, three-dimensional image reconstruction, and molecular modeling to visualize capsids decorated with Fab fragments of a receptor immunoglobulin, and surface plasmon resonance to measure the binding affinity. By both criteria, the mode of binding differs from those of the six monoclonal anti-core antigen antibodies previously characterized. The Fab interacts with two sites ∼30 Å apart. One interaction is canonical, whereby the CDR loops engage the tip of one of the 25 Å spikes that protrude from the capsid surface. The second interaction is non-canonical; in it, the Fab framework contacts the tip of an adjacent spike. The binding affinity of this Fab for capsids, KD ∼ 4 × 10− 7 M, is relatively low for an antibody-antigen interaction, but is ∼ 150-fold lower still (∼ 2.5 × 10− 5 M) for unassembled capsid protein dimers. The latter observation indicates that both of the observed interactions are required to achieve stable binding of capsids by this receptor immunoglobulin. Considerations of conserved sequence motifs in other such molecules suggest that other naïve B cells may interact with HBV capsids in much the same way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号